This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ixpeq2 | |- ( A. x e. A B = C -> X_ x e. A B = X_ x e. A C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2ixp | |- ( A. x e. A B C_ C -> X_ x e. A B C_ X_ x e. A C ) |
|
| 2 | ss2ixp | |- ( A. x e. A C C_ B -> X_ x e. A C C_ X_ x e. A B ) |
|
| 3 | 1 2 | anim12i | |- ( ( A. x e. A B C_ C /\ A. x e. A C C_ B ) -> ( X_ x e. A B C_ X_ x e. A C /\ X_ x e. A C C_ X_ x e. A B ) ) |
| 4 | eqss | |- ( B = C <-> ( B C_ C /\ C C_ B ) ) |
|
| 5 | 4 | ralbii | |- ( A. x e. A B = C <-> A. x e. A ( B C_ C /\ C C_ B ) ) |
| 6 | r19.26 | |- ( A. x e. A ( B C_ C /\ C C_ B ) <-> ( A. x e. A B C_ C /\ A. x e. A C C_ B ) ) |
|
| 7 | 5 6 | bitri | |- ( A. x e. A B = C <-> ( A. x e. A B C_ C /\ A. x e. A C C_ B ) ) |
| 8 | eqss | |- ( X_ x e. A B = X_ x e. A C <-> ( X_ x e. A B C_ X_ x e. A C /\ X_ x e. A C C_ X_ x e. A B ) ) |
|
| 9 | 3 7 8 | 3imtr4i | |- ( A. x e. A B = C -> X_ x e. A B = X_ x e. A C ) |