This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015) (Proof shortened by AV, 2-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | plusffval.1 | |- B = ( Base ` G ) |
|
| plusffval.2 | |- .+ = ( +g ` G ) |
||
| plusffval.3 | |- .+^ = ( +f ` G ) |
||
| Assertion | plusffval | |- .+^ = ( x e. B , y e. B |-> ( x .+ y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plusffval.1 | |- B = ( Base ` G ) |
|
| 2 | plusffval.2 | |- .+ = ( +g ` G ) |
|
| 3 | plusffval.3 | |- .+^ = ( +f ` G ) |
|
| 4 | fveq2 | |- ( g = G -> ( Base ` g ) = ( Base ` G ) ) |
|
| 5 | 4 1 | eqtr4di | |- ( g = G -> ( Base ` g ) = B ) |
| 6 | fveq2 | |- ( g = G -> ( +g ` g ) = ( +g ` G ) ) |
|
| 7 | 6 2 | eqtr4di | |- ( g = G -> ( +g ` g ) = .+ ) |
| 8 | 7 | oveqd | |- ( g = G -> ( x ( +g ` g ) y ) = ( x .+ y ) ) |
| 9 | 5 5 8 | mpoeq123dv | |- ( g = G -> ( x e. ( Base ` g ) , y e. ( Base ` g ) |-> ( x ( +g ` g ) y ) ) = ( x e. B , y e. B |-> ( x .+ y ) ) ) |
| 10 | df-plusf | |- +f = ( g e. _V |-> ( x e. ( Base ` g ) , y e. ( Base ` g ) |-> ( x ( +g ` g ) y ) ) ) |
|
| 11 | 1 | fvexi | |- B e. _V |
| 12 | 2 | fvexi | |- .+ e. _V |
| 13 | 12 | rnex | |- ran .+ e. _V |
| 14 | p0ex | |- { (/) } e. _V |
|
| 15 | 13 14 | unex | |- ( ran .+ u. { (/) } ) e. _V |
| 16 | df-ov | |- ( x .+ y ) = ( .+ ` <. x , y >. ) |
|
| 17 | fvrn0 | |- ( .+ ` <. x , y >. ) e. ( ran .+ u. { (/) } ) |
|
| 18 | 16 17 | eqeltri | |- ( x .+ y ) e. ( ran .+ u. { (/) } ) |
| 19 | 18 | rgen2w | |- A. x e. B A. y e. B ( x .+ y ) e. ( ran .+ u. { (/) } ) |
| 20 | 11 11 15 19 | mpoexw | |- ( x e. B , y e. B |-> ( x .+ y ) ) e. _V |
| 21 | 9 10 20 | fvmpt | |- ( G e. _V -> ( +f ` G ) = ( x e. B , y e. B |-> ( x .+ y ) ) ) |
| 22 | fvprc | |- ( -. G e. _V -> ( +f ` G ) = (/) ) |
|
| 23 | fvprc | |- ( -. G e. _V -> ( Base ` G ) = (/) ) |
|
| 24 | 1 23 | eqtrid | |- ( -. G e. _V -> B = (/) ) |
| 25 | 24 | olcd | |- ( -. G e. _V -> ( B = (/) \/ B = (/) ) ) |
| 26 | 0mpo0 | |- ( ( B = (/) \/ B = (/) ) -> ( x e. B , y e. B |-> ( x .+ y ) ) = (/) ) |
|
| 27 | 25 26 | syl | |- ( -. G e. _V -> ( x e. B , y e. B |-> ( x .+ y ) ) = (/) ) |
| 28 | 22 27 | eqtr4d | |- ( -. G e. _V -> ( +f ` G ) = ( x e. B , y e. B |-> ( x .+ y ) ) ) |
| 29 | 21 28 | pm2.61i | |- ( +f ` G ) = ( x e. B , y e. B |-> ( x .+ y ) ) |
| 30 | 3 29 | eqtri | |- .+^ = ( x e. B , y e. B |-> ( x .+ y ) ) |