This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A structure product of topological spaces is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdstopn.y | |- Y = ( S Xs_ R ) |
|
| prdstopn.s | |- ( ph -> S e. V ) |
||
| prdstopn.i | |- ( ph -> I e. W ) |
||
| prdstps.r | |- ( ph -> R : I --> TopSp ) |
||
| Assertion | prdstps | |- ( ph -> Y e. TopSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdstopn.y | |- Y = ( S Xs_ R ) |
|
| 2 | prdstopn.s | |- ( ph -> S e. V ) |
|
| 3 | prdstopn.i | |- ( ph -> I e. W ) |
|
| 4 | prdstps.r | |- ( ph -> R : I --> TopSp ) |
|
| 5 | 4 | ffvelcdmda | |- ( ( ph /\ x e. I ) -> ( R ` x ) e. TopSp ) |
| 6 | eqid | |- ( Base ` ( R ` x ) ) = ( Base ` ( R ` x ) ) |
|
| 7 | eqid | |- ( TopOpen ` ( R ` x ) ) = ( TopOpen ` ( R ` x ) ) |
|
| 8 | 6 7 | istps | |- ( ( R ` x ) e. TopSp <-> ( TopOpen ` ( R ` x ) ) e. ( TopOn ` ( Base ` ( R ` x ) ) ) ) |
| 9 | 5 8 | sylib | |- ( ( ph /\ x e. I ) -> ( TopOpen ` ( R ` x ) ) e. ( TopOn ` ( Base ` ( R ` x ) ) ) ) |
| 10 | 9 | ralrimiva | |- ( ph -> A. x e. I ( TopOpen ` ( R ` x ) ) e. ( TopOn ` ( Base ` ( R ` x ) ) ) ) |
| 11 | eqid | |- ( Xt_ ` ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) = ( Xt_ ` ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) |
|
| 12 | 11 | pttopon | |- ( ( I e. W /\ A. x e. I ( TopOpen ` ( R ` x ) ) e. ( TopOn ` ( Base ` ( R ` x ) ) ) ) -> ( Xt_ ` ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) e. ( TopOn ` X_ x e. I ( Base ` ( R ` x ) ) ) ) |
| 13 | 3 10 12 | syl2anc | |- ( ph -> ( Xt_ ` ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) e. ( TopOn ` X_ x e. I ( Base ` ( R ` x ) ) ) ) |
| 14 | 4 3 | fexd | |- ( ph -> R e. _V ) |
| 15 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 16 | 4 | fdmd | |- ( ph -> dom R = I ) |
| 17 | eqid | |- ( TopSet ` Y ) = ( TopSet ` Y ) |
|
| 18 | 1 2 14 15 16 17 | prdstset | |- ( ph -> ( TopSet ` Y ) = ( Xt_ ` ( TopOpen o. R ) ) ) |
| 19 | topnfn | |- TopOpen Fn _V |
|
| 20 | dffn2 | |- ( TopOpen Fn _V <-> TopOpen : _V --> _V ) |
|
| 21 | 19 20 | mpbi | |- TopOpen : _V --> _V |
| 22 | ssv | |- TopSp C_ _V |
|
| 23 | fss | |- ( ( R : I --> TopSp /\ TopSp C_ _V ) -> R : I --> _V ) |
|
| 24 | 4 22 23 | sylancl | |- ( ph -> R : I --> _V ) |
| 25 | fcompt | |- ( ( TopOpen : _V --> _V /\ R : I --> _V ) -> ( TopOpen o. R ) = ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) |
|
| 26 | 21 24 25 | sylancr | |- ( ph -> ( TopOpen o. R ) = ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) |
| 27 | 26 | fveq2d | |- ( ph -> ( Xt_ ` ( TopOpen o. R ) ) = ( Xt_ ` ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) ) |
| 28 | 18 27 | eqtrd | |- ( ph -> ( TopSet ` Y ) = ( Xt_ ` ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) ) |
| 29 | 1 2 14 15 16 | prdsbas | |- ( ph -> ( Base ` Y ) = X_ x e. I ( Base ` ( R ` x ) ) ) |
| 30 | 29 | fveq2d | |- ( ph -> ( TopOn ` ( Base ` Y ) ) = ( TopOn ` X_ x e. I ( Base ` ( R ` x ) ) ) ) |
| 31 | 13 28 30 | 3eltr4d | |- ( ph -> ( TopSet ` Y ) e. ( TopOn ` ( Base ` Y ) ) ) |
| 32 | 15 17 | tsettps | |- ( ( TopSet ` Y ) e. ( TopOn ` ( Base ` Y ) ) -> Y e. TopSp ) |
| 33 | 31 32 | syl | |- ( ph -> Y e. TopSp ) |