This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The characteristic of a polynomial ring is the characteristic of the underlying ring. (Contributed by Thierry Arnoux, 24-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ply1chr.1 | |- P = ( Poly1 ` R ) |
|
| Assertion | ply1chr | |- ( R e. CRing -> ( chr ` P ) = ( chr ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1chr.1 | |- P = ( Poly1 ` R ) |
|
| 2 | eqid | |- ( od ` P ) = ( od ` P ) |
|
| 3 | eqid | |- ( 1r ` P ) = ( 1r ` P ) |
|
| 4 | eqid | |- ( chr ` P ) = ( chr ` P ) |
|
| 5 | 2 3 4 | chrval | |- ( ( od ` P ) ` ( 1r ` P ) ) = ( chr ` P ) |
| 6 | eqid | |- ( od ` R ) = ( od ` R ) |
|
| 7 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 8 | eqid | |- ( chr ` R ) = ( chr ` R ) |
|
| 9 | 6 7 8 | chrval | |- ( ( od ` R ) ` ( 1r ` R ) ) = ( chr ` R ) |
| 10 | 9 | eqcomi | |- ( chr ` R ) = ( ( od ` R ) ` ( 1r ` R ) ) |
| 11 | id | |- ( R e. CRing -> R e. CRing ) |
|
| 12 | 11 | crnggrpd | |- ( R e. CRing -> R e. Grp ) |
| 13 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 14 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 15 | 14 7 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 16 | 13 15 | syl | |- ( R e. CRing -> ( 1r ` R ) e. ( Base ` R ) ) |
| 17 | 8 | chrcl | |- ( R e. Ring -> ( chr ` R ) e. NN0 ) |
| 18 | 13 17 | syl | |- ( R e. CRing -> ( chr ` R ) e. NN0 ) |
| 19 | eqid | |- ( .g ` R ) = ( .g ` R ) |
|
| 20 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 21 | 14 6 19 20 | odeq | |- ( ( R e. Grp /\ ( 1r ` R ) e. ( Base ` R ) /\ ( chr ` R ) e. NN0 ) -> ( ( chr ` R ) = ( ( od ` R ) ` ( 1r ` R ) ) <-> A. n e. NN0 ( ( chr ` R ) || n <-> ( n ( .g ` R ) ( 1r ` R ) ) = ( 0g ` R ) ) ) ) |
| 22 | 12 16 18 21 | syl3anc | |- ( R e. CRing -> ( ( chr ` R ) = ( ( od ` R ) ` ( 1r ` R ) ) <-> A. n e. NN0 ( ( chr ` R ) || n <-> ( n ( .g ` R ) ( 1r ` R ) ) = ( 0g ` R ) ) ) ) |
| 23 | 10 22 | mpbii | |- ( R e. CRing -> A. n e. NN0 ( ( chr ` R ) || n <-> ( n ( .g ` R ) ( 1r ` R ) ) = ( 0g ` R ) ) ) |
| 24 | 23 | r19.21bi | |- ( ( R e. CRing /\ n e. NN0 ) -> ( ( chr ` R ) || n <-> ( n ( .g ` R ) ( 1r ` R ) ) = ( 0g ` R ) ) ) |
| 25 | eqid | |- ( algSc ` P ) = ( algSc ` P ) |
|
| 26 | 13 | adantr | |- ( ( R e. CRing /\ n e. NN0 ) -> R e. Ring ) |
| 27 | 12 | grpmndd | |- ( R e. CRing -> R e. Mnd ) |
| 28 | 27 | adantr | |- ( ( R e. CRing /\ n e. NN0 ) -> R e. Mnd ) |
| 29 | simpr | |- ( ( R e. CRing /\ n e. NN0 ) -> n e. NN0 ) |
|
| 30 | 16 | adantr | |- ( ( R e. CRing /\ n e. NN0 ) -> ( 1r ` R ) e. ( Base ` R ) ) |
| 31 | 14 19 28 29 30 | mulgnn0cld | |- ( ( R e. CRing /\ n e. NN0 ) -> ( n ( .g ` R ) ( 1r ` R ) ) e. ( Base ` R ) ) |
| 32 | simpl | |- ( ( R e. CRing /\ n e. NN0 ) -> R e. CRing ) |
|
| 33 | 14 20 | ring0cl | |- ( R e. Ring -> ( 0g ` R ) e. ( Base ` R ) ) |
| 34 | 32 13 33 | 3syl | |- ( ( R e. CRing /\ n e. NN0 ) -> ( 0g ` R ) e. ( Base ` R ) ) |
| 35 | 1 14 25 26 31 34 | ply1scleq | |- ( ( R e. CRing /\ n e. NN0 ) -> ( ( ( algSc ` P ) ` ( n ( .g ` R ) ( 1r ` R ) ) ) = ( ( algSc ` P ) ` ( 0g ` R ) ) <-> ( n ( .g ` R ) ( 1r ` R ) ) = ( 0g ` R ) ) ) |
| 36 | 1 | ply1sca | |- ( R e. CRing -> R = ( Scalar ` P ) ) |
| 37 | 36 | adantr | |- ( ( R e. CRing /\ n e. NN0 ) -> R = ( Scalar ` P ) ) |
| 38 | 37 | fveq2d | |- ( ( R e. CRing /\ n e. NN0 ) -> ( .g ` R ) = ( .g ` ( Scalar ` P ) ) ) |
| 39 | 38 | oveqd | |- ( ( R e. CRing /\ n e. NN0 ) -> ( n ( .g ` R ) ( 1r ` R ) ) = ( n ( .g ` ( Scalar ` P ) ) ( 1r ` R ) ) ) |
| 40 | 39 | fveq2d | |- ( ( R e. CRing /\ n e. NN0 ) -> ( ( algSc ` P ) ` ( n ( .g ` R ) ( 1r ` R ) ) ) = ( ( algSc ` P ) ` ( n ( .g ` ( Scalar ` P ) ) ( 1r ` R ) ) ) ) |
| 41 | 1 | ply1assa | |- ( R e. CRing -> P e. AssAlg ) |
| 42 | 41 | adantr | |- ( ( R e. CRing /\ n e. NN0 ) -> P e. AssAlg ) |
| 43 | 37 | fveq2d | |- ( ( R e. CRing /\ n e. NN0 ) -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
| 44 | 30 43 | eleqtrd | |- ( ( R e. CRing /\ n e. NN0 ) -> ( 1r ` R ) e. ( Base ` ( Scalar ` P ) ) ) |
| 45 | eqid | |- ( Scalar ` P ) = ( Scalar ` P ) |
|
| 46 | eqid | |- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
|
| 47 | eqid | |- ( .g ` P ) = ( .g ` P ) |
|
| 48 | eqid | |- ( .g ` ( Scalar ` P ) ) = ( .g ` ( Scalar ` P ) ) |
|
| 49 | 25 45 46 47 48 | asclmulg | |- ( ( P e. AssAlg /\ n e. NN0 /\ ( 1r ` R ) e. ( Base ` ( Scalar ` P ) ) ) -> ( ( algSc ` P ) ` ( n ( .g ` ( Scalar ` P ) ) ( 1r ` R ) ) ) = ( n ( .g ` P ) ( ( algSc ` P ) ` ( 1r ` R ) ) ) ) |
| 50 | 42 29 44 49 | syl3anc | |- ( ( R e. CRing /\ n e. NN0 ) -> ( ( algSc ` P ) ` ( n ( .g ` ( Scalar ` P ) ) ( 1r ` R ) ) ) = ( n ( .g ` P ) ( ( algSc ` P ) ` ( 1r ` R ) ) ) ) |
| 51 | 40 50 | eqtrd | |- ( ( R e. CRing /\ n e. NN0 ) -> ( ( algSc ` P ) ` ( n ( .g ` R ) ( 1r ` R ) ) ) = ( n ( .g ` P ) ( ( algSc ` P ) ` ( 1r ` R ) ) ) ) |
| 52 | eqid | |- ( 0g ` P ) = ( 0g ` P ) |
|
| 53 | 1 25 20 52 | ply1scl0 | |- ( R e. Ring -> ( ( algSc ` P ) ` ( 0g ` R ) ) = ( 0g ` P ) ) |
| 54 | 32 13 53 | 3syl | |- ( ( R e. CRing /\ n e. NN0 ) -> ( ( algSc ` P ) ` ( 0g ` R ) ) = ( 0g ` P ) ) |
| 55 | 51 54 | eqeq12d | |- ( ( R e. CRing /\ n e. NN0 ) -> ( ( ( algSc ` P ) ` ( n ( .g ` R ) ( 1r ` R ) ) ) = ( ( algSc ` P ) ` ( 0g ` R ) ) <-> ( n ( .g ` P ) ( ( algSc ` P ) ` ( 1r ` R ) ) ) = ( 0g ` P ) ) ) |
| 56 | 24 35 55 | 3bitr2d | |- ( ( R e. CRing /\ n e. NN0 ) -> ( ( chr ` R ) || n <-> ( n ( .g ` P ) ( ( algSc ` P ) ` ( 1r ` R ) ) ) = ( 0g ` P ) ) ) |
| 57 | 56 | ralrimiva | |- ( R e. CRing -> A. n e. NN0 ( ( chr ` R ) || n <-> ( n ( .g ` P ) ( ( algSc ` P ) ` ( 1r ` R ) ) ) = ( 0g ` P ) ) ) |
| 58 | 1 | ply1crng | |- ( R e. CRing -> P e. CRing ) |
| 59 | 58 | crnggrpd | |- ( R e. CRing -> P e. Grp ) |
| 60 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 61 | 1 25 14 60 | ply1sclcl | |- ( ( R e. Ring /\ ( 1r ` R ) e. ( Base ` R ) ) -> ( ( algSc ` P ) ` ( 1r ` R ) ) e. ( Base ` P ) ) |
| 62 | 13 16 61 | syl2anc | |- ( R e. CRing -> ( ( algSc ` P ) ` ( 1r ` R ) ) e. ( Base ` P ) ) |
| 63 | 60 2 47 52 | odeq | |- ( ( P e. Grp /\ ( ( algSc ` P ) ` ( 1r ` R ) ) e. ( Base ` P ) /\ ( chr ` R ) e. NN0 ) -> ( ( chr ` R ) = ( ( od ` P ) ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) <-> A. n e. NN0 ( ( chr ` R ) || n <-> ( n ( .g ` P ) ( ( algSc ` P ) ` ( 1r ` R ) ) ) = ( 0g ` P ) ) ) ) |
| 64 | 59 62 18 63 | syl3anc | |- ( R e. CRing -> ( ( chr ` R ) = ( ( od ` P ) ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) <-> A. n e. NN0 ( ( chr ` R ) || n <-> ( n ( .g ` P ) ( ( algSc ` P ) ` ( 1r ` R ) ) ) = ( 0g ` P ) ) ) ) |
| 65 | 57 64 | mpbird | |- ( R e. CRing -> ( chr ` R ) = ( ( od ` P ) ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) ) |
| 66 | 1 25 7 3 | ply1scl1 | |- ( R e. Ring -> ( ( algSc ` P ) ` ( 1r ` R ) ) = ( 1r ` P ) ) |
| 67 | 66 | fveq2d | |- ( R e. Ring -> ( ( od ` P ) ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) = ( ( od ` P ) ` ( 1r ` P ) ) ) |
| 68 | 13 67 | syl | |- ( R e. CRing -> ( ( od ` P ) ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) = ( ( od ` P ) ` ( 1r ` P ) ) ) |
| 69 | 65 68 | eqtr2d | |- ( R e. CRing -> ( ( od ` P ) ` ( 1r ` P ) ) = ( chr ` R ) ) |
| 70 | 5 69 | eqtr3id | |- ( R e. CRing -> ( chr ` P ) = ( chr ` R ) ) |