This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Apply group multiplication to the algebra scalars. (Contributed by Thierry Arnoux, 24-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | asclmulg.a | |- A = ( algSc ` W ) |
|
| asclmulg.f | |- F = ( Scalar ` W ) |
||
| asclmulg.k | |- K = ( Base ` F ) |
||
| asclmulg.m | |- .^ = ( .g ` W ) |
||
| asclmulg.t | |- .* = ( .g ` F ) |
||
| Assertion | asclmulg | |- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> ( A ` ( N .* X ) ) = ( N .^ ( A ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclmulg.a | |- A = ( algSc ` W ) |
|
| 2 | asclmulg.f | |- F = ( Scalar ` W ) |
|
| 3 | asclmulg.k | |- K = ( Base ` F ) |
|
| 4 | asclmulg.m | |- .^ = ( .g ` W ) |
|
| 5 | asclmulg.t | |- .* = ( .g ` F ) |
|
| 6 | assalmod | |- ( W e. AssAlg -> W e. LMod ) |
|
| 7 | 6 | 3ad2ant1 | |- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> W e. LMod ) |
| 8 | simp3 | |- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> X e. K ) |
|
| 9 | simp2 | |- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> N e. NN0 ) |
|
| 10 | assaring | |- ( W e. AssAlg -> W e. Ring ) |
|
| 11 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 12 | eqid | |- ( 1r ` W ) = ( 1r ` W ) |
|
| 13 | 11 12 | ringidcl | |- ( W e. Ring -> ( 1r ` W ) e. ( Base ` W ) ) |
| 14 | 10 13 | syl | |- ( W e. AssAlg -> ( 1r ` W ) e. ( Base ` W ) ) |
| 15 | 14 | 3ad2ant1 | |- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> ( 1r ` W ) e. ( Base ` W ) ) |
| 16 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 17 | 11 2 16 3 4 5 | lmodvsmmulgdi | |- ( ( W e. LMod /\ ( X e. K /\ N e. NN0 /\ ( 1r ` W ) e. ( Base ` W ) ) ) -> ( N .^ ( X ( .s ` W ) ( 1r ` W ) ) ) = ( ( N .* X ) ( .s ` W ) ( 1r ` W ) ) ) |
| 18 | 7 8 9 15 17 | syl13anc | |- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> ( N .^ ( X ( .s ` W ) ( 1r ` W ) ) ) = ( ( N .* X ) ( .s ` W ) ( 1r ` W ) ) ) |
| 19 | 1 2 3 16 12 | asclval | |- ( X e. K -> ( A ` X ) = ( X ( .s ` W ) ( 1r ` W ) ) ) |
| 20 | 8 19 | syl | |- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> ( A ` X ) = ( X ( .s ` W ) ( 1r ` W ) ) ) |
| 21 | 20 | oveq2d | |- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> ( N .^ ( A ` X ) ) = ( N .^ ( X ( .s ` W ) ( 1r ` W ) ) ) ) |
| 22 | 2 | assasca | |- ( W e. AssAlg -> F e. Ring ) |
| 23 | 22 | ringgrpd | |- ( W e. AssAlg -> F e. Grp ) |
| 24 | 23 | 3ad2ant1 | |- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> F e. Grp ) |
| 25 | 9 | nn0zd | |- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> N e. ZZ ) |
| 26 | 3 5 24 25 8 | mulgcld | |- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> ( N .* X ) e. K ) |
| 27 | 1 2 3 16 12 | asclval | |- ( ( N .* X ) e. K -> ( A ` ( N .* X ) ) = ( ( N .* X ) ( .s ` W ) ( 1r ` W ) ) ) |
| 28 | 26 27 | syl | |- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> ( A ` ( N .* X ) ) = ( ( N .* X ) ( .s ` W ) ( 1r ` W ) ) ) |
| 29 | 18 21 28 | 3eqtr4rd | |- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> ( A ` ( N .* X ) ) = ( N .^ ( A ` X ) ) ) |