This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The oddvds property uniquely defines the group order. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl.1 | |- X = ( Base ` G ) |
|
| odcl.2 | |- O = ( od ` G ) |
||
| odid.3 | |- .x. = ( .g ` G ) |
||
| odid.4 | |- .0. = ( 0g ` G ) |
||
| Assertion | odeq | |- ( ( G e. Grp /\ A e. X /\ N e. NN0 ) -> ( N = ( O ` A ) <-> A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | |- X = ( Base ` G ) |
|
| 2 | odcl.2 | |- O = ( od ` G ) |
|
| 3 | odid.3 | |- .x. = ( .g ` G ) |
|
| 4 | odid.4 | |- .0. = ( 0g ` G ) |
|
| 5 | nn0z | |- ( y e. NN0 -> y e. ZZ ) |
|
| 6 | 1 2 3 4 | oddvds | |- ( ( G e. Grp /\ A e. X /\ y e. ZZ ) -> ( ( O ` A ) || y <-> ( y .x. A ) = .0. ) ) |
| 7 | 5 6 | syl3an3 | |- ( ( G e. Grp /\ A e. X /\ y e. NN0 ) -> ( ( O ` A ) || y <-> ( y .x. A ) = .0. ) ) |
| 8 | 7 | 3expa | |- ( ( ( G e. Grp /\ A e. X ) /\ y e. NN0 ) -> ( ( O ` A ) || y <-> ( y .x. A ) = .0. ) ) |
| 9 | 8 | ralrimiva | |- ( ( G e. Grp /\ A e. X ) -> A. y e. NN0 ( ( O ` A ) || y <-> ( y .x. A ) = .0. ) ) |
| 10 | breq1 | |- ( N = ( O ` A ) -> ( N || y <-> ( O ` A ) || y ) ) |
|
| 11 | 10 | bibi1d | |- ( N = ( O ` A ) -> ( ( N || y <-> ( y .x. A ) = .0. ) <-> ( ( O ` A ) || y <-> ( y .x. A ) = .0. ) ) ) |
| 12 | 11 | ralbidv | |- ( N = ( O ` A ) -> ( A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) <-> A. y e. NN0 ( ( O ` A ) || y <-> ( y .x. A ) = .0. ) ) ) |
| 13 | 9 12 | syl5ibrcom | |- ( ( G e. Grp /\ A e. X ) -> ( N = ( O ` A ) -> A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) ) |
| 14 | 13 | 3adant3 | |- ( ( G e. Grp /\ A e. X /\ N e. NN0 ) -> ( N = ( O ` A ) -> A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) ) |
| 15 | simpl3 | |- ( ( ( G e. Grp /\ A e. X /\ N e. NN0 ) /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> N e. NN0 ) |
|
| 16 | simpl2 | |- ( ( ( G e. Grp /\ A e. X /\ N e. NN0 ) /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> A e. X ) |
|
| 17 | 1 2 | odcl | |- ( A e. X -> ( O ` A ) e. NN0 ) |
| 18 | 16 17 | syl | |- ( ( ( G e. Grp /\ A e. X /\ N e. NN0 ) /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> ( O ` A ) e. NN0 ) |
| 19 | 1 2 3 4 | odid | |- ( A e. X -> ( ( O ` A ) .x. A ) = .0. ) |
| 20 | 16 19 | syl | |- ( ( ( G e. Grp /\ A e. X /\ N e. NN0 ) /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> ( ( O ` A ) .x. A ) = .0. ) |
| 21 | 17 | 3ad2ant2 | |- ( ( G e. Grp /\ A e. X /\ N e. NN0 ) -> ( O ` A ) e. NN0 ) |
| 22 | breq2 | |- ( y = ( O ` A ) -> ( N || y <-> N || ( O ` A ) ) ) |
|
| 23 | oveq1 | |- ( y = ( O ` A ) -> ( y .x. A ) = ( ( O ` A ) .x. A ) ) |
|
| 24 | 23 | eqeq1d | |- ( y = ( O ` A ) -> ( ( y .x. A ) = .0. <-> ( ( O ` A ) .x. A ) = .0. ) ) |
| 25 | 22 24 | bibi12d | |- ( y = ( O ` A ) -> ( ( N || y <-> ( y .x. A ) = .0. ) <-> ( N || ( O ` A ) <-> ( ( O ` A ) .x. A ) = .0. ) ) ) |
| 26 | 25 | rspcva | |- ( ( ( O ` A ) e. NN0 /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> ( N || ( O ` A ) <-> ( ( O ` A ) .x. A ) = .0. ) ) |
| 27 | 21 26 | sylan | |- ( ( ( G e. Grp /\ A e. X /\ N e. NN0 ) /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> ( N || ( O ` A ) <-> ( ( O ` A ) .x. A ) = .0. ) ) |
| 28 | 20 27 | mpbird | |- ( ( ( G e. Grp /\ A e. X /\ N e. NN0 ) /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> N || ( O ` A ) ) |
| 29 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 30 | iddvds | |- ( N e. ZZ -> N || N ) |
|
| 31 | 15 29 30 | 3syl | |- ( ( ( G e. Grp /\ A e. X /\ N e. NN0 ) /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> N || N ) |
| 32 | breq2 | |- ( y = N -> ( N || y <-> N || N ) ) |
|
| 33 | oveq1 | |- ( y = N -> ( y .x. A ) = ( N .x. A ) ) |
|
| 34 | 33 | eqeq1d | |- ( y = N -> ( ( y .x. A ) = .0. <-> ( N .x. A ) = .0. ) ) |
| 35 | 32 34 | bibi12d | |- ( y = N -> ( ( N || y <-> ( y .x. A ) = .0. ) <-> ( N || N <-> ( N .x. A ) = .0. ) ) ) |
| 36 | 35 | rspcva | |- ( ( N e. NN0 /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> ( N || N <-> ( N .x. A ) = .0. ) ) |
| 37 | 36 | 3ad2antl3 | |- ( ( ( G e. Grp /\ A e. X /\ N e. NN0 ) /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> ( N || N <-> ( N .x. A ) = .0. ) ) |
| 38 | 31 37 | mpbid | |- ( ( ( G e. Grp /\ A e. X /\ N e. NN0 ) /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> ( N .x. A ) = .0. ) |
| 39 | 1 2 3 4 | oddvds | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( ( O ` A ) || N <-> ( N .x. A ) = .0. ) ) |
| 40 | 29 39 | syl3an3 | |- ( ( G e. Grp /\ A e. X /\ N e. NN0 ) -> ( ( O ` A ) || N <-> ( N .x. A ) = .0. ) ) |
| 41 | 40 | adantr | |- ( ( ( G e. Grp /\ A e. X /\ N e. NN0 ) /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> ( ( O ` A ) || N <-> ( N .x. A ) = .0. ) ) |
| 42 | 38 41 | mpbird | |- ( ( ( G e. Grp /\ A e. X /\ N e. NN0 ) /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> ( O ` A ) || N ) |
| 43 | dvdseq | |- ( ( ( N e. NN0 /\ ( O ` A ) e. NN0 ) /\ ( N || ( O ` A ) /\ ( O ` A ) || N ) ) -> N = ( O ` A ) ) |
|
| 44 | 15 18 28 42 43 | syl22anc | |- ( ( ( G e. Grp /\ A e. X /\ N e. NN0 ) /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> N = ( O ` A ) ) |
| 45 | 44 | ex | |- ( ( G e. Grp /\ A e. X /\ N e. NN0 ) -> ( A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) -> N = ( O ` A ) ) ) |
| 46 | 14 45 | impbid | |- ( ( G e. Grp /\ A e. X /\ N e. NN0 ) -> ( N = ( O ` A ) <-> A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) ) |