This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero scalar is zero. (Contributed by Stefan O'Rear, 29-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1scl.p | |- P = ( Poly1 ` R ) |
|
| ply1scl.a | |- A = ( algSc ` P ) |
||
| ply1scl0.z | |- .0. = ( 0g ` R ) |
||
| ply1scl0.y | |- Y = ( 0g ` P ) |
||
| Assertion | ply1scl0 | |- ( R e. Ring -> ( A ` .0. ) = Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1scl.p | |- P = ( Poly1 ` R ) |
|
| 2 | ply1scl.a | |- A = ( algSc ` P ) |
|
| 3 | ply1scl0.z | |- .0. = ( 0g ` R ) |
|
| 4 | ply1scl0.y | |- Y = ( 0g ` P ) |
|
| 5 | 1 | ply1sca | |- ( R e. Ring -> R = ( Scalar ` P ) ) |
| 6 | 5 | fveq2d | |- ( R e. Ring -> ( 0g ` R ) = ( 0g ` ( Scalar ` P ) ) ) |
| 7 | 3 6 | eqtrid | |- ( R e. Ring -> .0. = ( 0g ` ( Scalar ` P ) ) ) |
| 8 | 7 | fveq2d | |- ( R e. Ring -> ( A ` .0. ) = ( A ` ( 0g ` ( Scalar ` P ) ) ) ) |
| 9 | eqid | |- ( Scalar ` P ) = ( Scalar ` P ) |
|
| 10 | 1 | ply1lmod | |- ( R e. Ring -> P e. LMod ) |
| 11 | 1 | ply1ring | |- ( R e. Ring -> P e. Ring ) |
| 12 | 2 9 10 11 | ascl0 | |- ( R e. Ring -> ( A ` ( 0g ` ( Scalar ` P ) ) ) = ( 0g ` P ) ) |
| 13 | 8 12 | eqtrd | |- ( R e. Ring -> ( A ` .0. ) = ( 0g ` P ) ) |
| 14 | 13 4 | eqtr4di | |- ( R e. Ring -> ( A ` .0. ) = Y ) |