This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of a constant polynomial is the same as equality of the constant term. (Contributed by Thierry Arnoux, 24-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1scleq.p | |- P = ( Poly1 ` R ) |
|
| ply1scleq.b | |- B = ( Base ` R ) |
||
| ply1scleq.a | |- A = ( algSc ` P ) |
||
| ply1scleq.r | |- ( ph -> R e. Ring ) |
||
| ply1scleq.e | |- ( ph -> E e. B ) |
||
| ply1scleq.f | |- ( ph -> F e. B ) |
||
| Assertion | ply1scleq | |- ( ph -> ( ( A ` E ) = ( A ` F ) <-> E = F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1scleq.p | |- P = ( Poly1 ` R ) |
|
| 2 | ply1scleq.b | |- B = ( Base ` R ) |
|
| 3 | ply1scleq.a | |- A = ( algSc ` P ) |
|
| 4 | ply1scleq.r | |- ( ph -> R e. Ring ) |
|
| 5 | ply1scleq.e | |- ( ph -> E e. B ) |
|
| 6 | ply1scleq.f | |- ( ph -> F e. B ) |
|
| 7 | fveq2 | |- ( d = 0 -> ( ( coe1 ` ( A ` E ) ) ` d ) = ( ( coe1 ` ( A ` E ) ) ` 0 ) ) |
|
| 8 | fveq2 | |- ( d = 0 -> ( ( coe1 ` ( A ` F ) ) ` d ) = ( ( coe1 ` ( A ` F ) ) ` 0 ) ) |
|
| 9 | 7 8 | eqeq12d | |- ( d = 0 -> ( ( ( coe1 ` ( A ` E ) ) ` d ) = ( ( coe1 ` ( A ` F ) ) ` d ) <-> ( ( coe1 ` ( A ` E ) ) ` 0 ) = ( ( coe1 ` ( A ` F ) ) ` 0 ) ) ) |
| 10 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 11 | 1 3 2 10 | ply1sclcl | |- ( ( R e. Ring /\ E e. B ) -> ( A ` E ) e. ( Base ` P ) ) |
| 12 | 4 5 11 | syl2anc | |- ( ph -> ( A ` E ) e. ( Base ` P ) ) |
| 13 | 1 3 2 10 | ply1sclcl | |- ( ( R e. Ring /\ F e. B ) -> ( A ` F ) e. ( Base ` P ) ) |
| 14 | 4 6 13 | syl2anc | |- ( ph -> ( A ` F ) e. ( Base ` P ) ) |
| 15 | eqid | |- ( coe1 ` ( A ` E ) ) = ( coe1 ` ( A ` E ) ) |
|
| 16 | eqid | |- ( coe1 ` ( A ` F ) ) = ( coe1 ` ( A ` F ) ) |
|
| 17 | 1 10 15 16 | ply1coe1eq | |- ( ( R e. Ring /\ ( A ` E ) e. ( Base ` P ) /\ ( A ` F ) e. ( Base ` P ) ) -> ( A. d e. NN0 ( ( coe1 ` ( A ` E ) ) ` d ) = ( ( coe1 ` ( A ` F ) ) ` d ) <-> ( A ` E ) = ( A ` F ) ) ) |
| 18 | 4 12 14 17 | syl3anc | |- ( ph -> ( A. d e. NN0 ( ( coe1 ` ( A ` E ) ) ` d ) = ( ( coe1 ` ( A ` F ) ) ` d ) <-> ( A ` E ) = ( A ` F ) ) ) |
| 19 | 18 | biimpar | |- ( ( ph /\ ( A ` E ) = ( A ` F ) ) -> A. d e. NN0 ( ( coe1 ` ( A ` E ) ) ` d ) = ( ( coe1 ` ( A ` F ) ) ` d ) ) |
| 20 | 0nn0 | |- 0 e. NN0 |
|
| 21 | 20 | a1i | |- ( ( ph /\ ( A ` E ) = ( A ` F ) ) -> 0 e. NN0 ) |
| 22 | 9 19 21 | rspcdva | |- ( ( ph /\ ( A ` E ) = ( A ` F ) ) -> ( ( coe1 ` ( A ` E ) ) ` 0 ) = ( ( coe1 ` ( A ` F ) ) ` 0 ) ) |
| 23 | 1 3 2 | ply1sclid | |- ( ( R e. Ring /\ E e. B ) -> E = ( ( coe1 ` ( A ` E ) ) ` 0 ) ) |
| 24 | 4 5 23 | syl2anc | |- ( ph -> E = ( ( coe1 ` ( A ` E ) ) ` 0 ) ) |
| 25 | 24 | adantr | |- ( ( ph /\ ( A ` E ) = ( A ` F ) ) -> E = ( ( coe1 ` ( A ` E ) ) ` 0 ) ) |
| 26 | 1 3 2 | ply1sclid | |- ( ( R e. Ring /\ F e. B ) -> F = ( ( coe1 ` ( A ` F ) ) ` 0 ) ) |
| 27 | 4 6 26 | syl2anc | |- ( ph -> F = ( ( coe1 ` ( A ` F ) ) ` 0 ) ) |
| 28 | 27 | adantr | |- ( ( ph /\ ( A ` E ) = ( A ` F ) ) -> F = ( ( coe1 ` ( A ` F ) ) ` 0 ) ) |
| 29 | 22 25 28 | 3eqtr4d | |- ( ( ph /\ ( A ` E ) = ( A ` F ) ) -> E = F ) |
| 30 | fveq2 | |- ( E = F -> ( A ` E ) = ( A ` F ) ) |
|
| 31 | 30 | adantl | |- ( ( ph /\ E = F ) -> ( A ` E ) = ( A ` F ) ) |
| 32 | 29 31 | impbida | |- ( ph -> ( ( A ` E ) = ( A ` F ) <-> E = F ) ) |