This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite group sum of scaled monomials is a univariate polynomial. (Contributed by AV, 8-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummonply1.p | |- P = ( Poly1 ` R ) |
|
| gsummonply1.b | |- B = ( Base ` P ) |
||
| gsummonply1.x | |- X = ( var1 ` R ) |
||
| gsummonply1.e | |- .^ = ( .g ` ( mulGrp ` P ) ) |
||
| gsummonply1.r | |- ( ph -> R e. Ring ) |
||
| gsummonply1.k | |- K = ( Base ` R ) |
||
| gsummonply1.m | |- .* = ( .s ` P ) |
||
| gsummonply1.0 | |- .0. = ( 0g ` R ) |
||
| gsummonply1.a | |- ( ph -> A. k e. NN0 A e. K ) |
||
| gsummonply1.f | |- ( ph -> ( k e. NN0 |-> A ) finSupp .0. ) |
||
| Assertion | gsumsmonply1 | |- ( ph -> ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummonply1.p | |- P = ( Poly1 ` R ) |
|
| 2 | gsummonply1.b | |- B = ( Base ` P ) |
|
| 3 | gsummonply1.x | |- X = ( var1 ` R ) |
|
| 4 | gsummonply1.e | |- .^ = ( .g ` ( mulGrp ` P ) ) |
|
| 5 | gsummonply1.r | |- ( ph -> R e. Ring ) |
|
| 6 | gsummonply1.k | |- K = ( Base ` R ) |
|
| 7 | gsummonply1.m | |- .* = ( .s ` P ) |
|
| 8 | gsummonply1.0 | |- .0. = ( 0g ` R ) |
|
| 9 | gsummonply1.a | |- ( ph -> A. k e. NN0 A e. K ) |
|
| 10 | gsummonply1.f | |- ( ph -> ( k e. NN0 |-> A ) finSupp .0. ) |
|
| 11 | eqid | |- ( 0g ` P ) = ( 0g ` P ) |
|
| 12 | 1 | ply1ring | |- ( R e. Ring -> P e. Ring ) |
| 13 | ringcmn | |- ( P e. Ring -> P e. CMnd ) |
|
| 14 | 5 12 13 | 3syl | |- ( ph -> P e. CMnd ) |
| 15 | nn0ex | |- NN0 e. _V |
|
| 16 | 15 | a1i | |- ( ph -> NN0 e. _V ) |
| 17 | 9 | r19.21bi | |- ( ( ph /\ k e. NN0 ) -> A e. K ) |
| 18 | 5 | 3ad2ant1 | |- ( ( ph /\ k e. NN0 /\ A e. K ) -> R e. Ring ) |
| 19 | simp3 | |- ( ( ph /\ k e. NN0 /\ A e. K ) -> A e. K ) |
|
| 20 | simp2 | |- ( ( ph /\ k e. NN0 /\ A e. K ) -> k e. NN0 ) |
|
| 21 | eqid | |- ( mulGrp ` P ) = ( mulGrp ` P ) |
|
| 22 | 6 1 3 7 21 4 2 | ply1tmcl | |- ( ( R e. Ring /\ A e. K /\ k e. NN0 ) -> ( A .* ( k .^ X ) ) e. B ) |
| 23 | 18 19 20 22 | syl3anc | |- ( ( ph /\ k e. NN0 /\ A e. K ) -> ( A .* ( k .^ X ) ) e. B ) |
| 24 | 17 23 | mpd3an3 | |- ( ( ph /\ k e. NN0 ) -> ( A .* ( k .^ X ) ) e. B ) |
| 25 | 24 | fmpttd | |- ( ph -> ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) : NN0 --> B ) |
| 26 | 1 | ply1lmod | |- ( R e. Ring -> P e. LMod ) |
| 27 | 5 26 | syl | |- ( ph -> P e. LMod ) |
| 28 | 1 | ply1sca | |- ( R e. Ring -> R = ( Scalar ` P ) ) |
| 29 | 5 28 | syl | |- ( ph -> R = ( Scalar ` P ) ) |
| 30 | 1 3 21 4 2 | ply1moncl | |- ( ( R e. Ring /\ k e. NN0 ) -> ( k .^ X ) e. B ) |
| 31 | 5 30 | sylan | |- ( ( ph /\ k e. NN0 ) -> ( k .^ X ) e. B ) |
| 32 | 16 27 29 2 17 31 11 8 7 10 | mptscmfsupp0 | |- ( ph -> ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) finSupp ( 0g ` P ) ) |
| 33 | 2 11 14 16 25 32 | gsumcl | |- ( ph -> ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) e. B ) |