This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring of univariate polynomials is a commutative ring. (Contributed by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ply1val.1 | |- P = ( Poly1 ` R ) |
|
| Assertion | ply1crng | |- ( R e. CRing -> P e. CRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1val.1 | |- P = ( Poly1 ` R ) |
|
| 2 | eqid | |- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
|
| 3 | 2 | psr1crng | |- ( R e. CRing -> ( PwSer1 ` R ) e. CRing ) |
| 4 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 5 | 1 4 | ply1bas | |- ( Base ` P ) = ( Base ` ( 1o mPoly R ) ) |
| 6 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 7 | 1 2 4 | ply1subrg | |- ( R e. Ring -> ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) ) |
| 8 | 6 7 | syl | |- ( R e. CRing -> ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) ) |
| 9 | 5 8 | eqeltrrid | |- ( R e. CRing -> ( Base ` ( 1o mPoly R ) ) e. ( SubRing ` ( PwSer1 ` R ) ) ) |
| 10 | 1 2 | ply1val | |- P = ( ( PwSer1 ` R ) |`s ( Base ` ( 1o mPoly R ) ) ) |
| 11 | 10 | subrgcrng | |- ( ( ( PwSer1 ` R ) e. CRing /\ ( Base ` ( 1o mPoly R ) ) e. ( SubRing ` ( PwSer1 ` R ) ) ) -> P e. CRing ) |
| 12 | 3 9 11 | syl2anc | |- ( R e. CRing -> P e. CRing ) |