This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ovolshft . (Contributed by Mario Carneiro, 22-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolshft.1 | |- ( ph -> A C_ RR ) |
|
| ovolshft.2 | |- ( ph -> C e. RR ) |
||
| ovolshft.3 | |- ( ph -> B = { x e. RR | ( x - C ) e. A } ) |
||
| ovolshft.4 | |- M = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( B C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } |
||
| ovolshft.5 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
||
| ovolshft.6 | |- G = ( n e. NN |-> <. ( ( 1st ` ( F ` n ) ) + C ) , ( ( 2nd ` ( F ` n ) ) + C ) >. ) |
||
| ovolshft.7 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
||
| ovolshft.8 | |- ( ph -> A C_ U. ran ( (,) o. F ) ) |
||
| Assertion | ovolshftlem1 | |- ( ph -> sup ( ran S , RR* , < ) e. M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolshft.1 | |- ( ph -> A C_ RR ) |
|
| 2 | ovolshft.2 | |- ( ph -> C e. RR ) |
|
| 3 | ovolshft.3 | |- ( ph -> B = { x e. RR | ( x - C ) e. A } ) |
|
| 4 | ovolshft.4 | |- M = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( B C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } |
|
| 5 | ovolshft.5 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
|
| 6 | ovolshft.6 | |- G = ( n e. NN |-> <. ( ( 1st ` ( F ` n ) ) + C ) , ( ( 2nd ` ( F ` n ) ) + C ) >. ) |
|
| 7 | ovolshft.7 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 8 | ovolshft.8 | |- ( ph -> A C_ U. ran ( (,) o. F ) ) |
|
| 9 | ovolfcl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) ) |
|
| 10 | 7 9 | sylan | |- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) ) |
| 11 | 10 | simp1d | |- ( ( ph /\ n e. NN ) -> ( 1st ` ( F ` n ) ) e. RR ) |
| 12 | 10 | simp2d | |- ( ( ph /\ n e. NN ) -> ( 2nd ` ( F ` n ) ) e. RR ) |
| 13 | 2 | adantr | |- ( ( ph /\ n e. NN ) -> C e. RR ) |
| 14 | 10 | simp3d | |- ( ( ph /\ n e. NN ) -> ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) |
| 15 | 11 12 13 14 | leadd1dd | |- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) + C ) <_ ( ( 2nd ` ( F ` n ) ) + C ) ) |
| 16 | df-br | |- ( ( ( 1st ` ( F ` n ) ) + C ) <_ ( ( 2nd ` ( F ` n ) ) + C ) <-> <. ( ( 1st ` ( F ` n ) ) + C ) , ( ( 2nd ` ( F ` n ) ) + C ) >. e. <_ ) |
|
| 17 | 15 16 | sylib | |- ( ( ph /\ n e. NN ) -> <. ( ( 1st ` ( F ` n ) ) + C ) , ( ( 2nd ` ( F ` n ) ) + C ) >. e. <_ ) |
| 18 | 11 13 | readdcld | |- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) + C ) e. RR ) |
| 19 | 12 13 | readdcld | |- ( ( ph /\ n e. NN ) -> ( ( 2nd ` ( F ` n ) ) + C ) e. RR ) |
| 20 | 18 19 | opelxpd | |- ( ( ph /\ n e. NN ) -> <. ( ( 1st ` ( F ` n ) ) + C ) , ( ( 2nd ` ( F ` n ) ) + C ) >. e. ( RR X. RR ) ) |
| 21 | 17 20 | elind | |- ( ( ph /\ n e. NN ) -> <. ( ( 1st ` ( F ` n ) ) + C ) , ( ( 2nd ` ( F ` n ) ) + C ) >. e. ( <_ i^i ( RR X. RR ) ) ) |
| 22 | 21 6 | fmptd | |- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 23 | eqid | |- ( ( abs o. - ) o. G ) = ( ( abs o. - ) o. G ) |
|
| 24 | 23 | ovolfsf | |- ( G : NN --> ( <_ i^i ( RR X. RR ) ) -> ( ( abs o. - ) o. G ) : NN --> ( 0 [,) +oo ) ) |
| 25 | ffn | |- ( ( ( abs o. - ) o. G ) : NN --> ( 0 [,) +oo ) -> ( ( abs o. - ) o. G ) Fn NN ) |
|
| 26 | 22 24 25 | 3syl | |- ( ph -> ( ( abs o. - ) o. G ) Fn NN ) |
| 27 | eqid | |- ( ( abs o. - ) o. F ) = ( ( abs o. - ) o. F ) |
|
| 28 | 27 | ovolfsf | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( ( abs o. - ) o. F ) : NN --> ( 0 [,) +oo ) ) |
| 29 | ffn | |- ( ( ( abs o. - ) o. F ) : NN --> ( 0 [,) +oo ) -> ( ( abs o. - ) o. F ) Fn NN ) |
|
| 30 | 7 28 29 | 3syl | |- ( ph -> ( ( abs o. - ) o. F ) Fn NN ) |
| 31 | opex | |- <. ( ( 1st ` ( F ` n ) ) + C ) , ( ( 2nd ` ( F ` n ) ) + C ) >. e. _V |
|
| 32 | 6 | fvmpt2 | |- ( ( n e. NN /\ <. ( ( 1st ` ( F ` n ) ) + C ) , ( ( 2nd ` ( F ` n ) ) + C ) >. e. _V ) -> ( G ` n ) = <. ( ( 1st ` ( F ` n ) ) + C ) , ( ( 2nd ` ( F ` n ) ) + C ) >. ) |
| 33 | 31 32 | mpan2 | |- ( n e. NN -> ( G ` n ) = <. ( ( 1st ` ( F ` n ) ) + C ) , ( ( 2nd ` ( F ` n ) ) + C ) >. ) |
| 34 | 33 | fveq2d | |- ( n e. NN -> ( 2nd ` ( G ` n ) ) = ( 2nd ` <. ( ( 1st ` ( F ` n ) ) + C ) , ( ( 2nd ` ( F ` n ) ) + C ) >. ) ) |
| 35 | ovex | |- ( ( 1st ` ( F ` n ) ) + C ) e. _V |
|
| 36 | ovex | |- ( ( 2nd ` ( F ` n ) ) + C ) e. _V |
|
| 37 | 35 36 | op2nd | |- ( 2nd ` <. ( ( 1st ` ( F ` n ) ) + C ) , ( ( 2nd ` ( F ` n ) ) + C ) >. ) = ( ( 2nd ` ( F ` n ) ) + C ) |
| 38 | 34 37 | eqtrdi | |- ( n e. NN -> ( 2nd ` ( G ` n ) ) = ( ( 2nd ` ( F ` n ) ) + C ) ) |
| 39 | 33 | fveq2d | |- ( n e. NN -> ( 1st ` ( G ` n ) ) = ( 1st ` <. ( ( 1st ` ( F ` n ) ) + C ) , ( ( 2nd ` ( F ` n ) ) + C ) >. ) ) |
| 40 | 35 36 | op1st | |- ( 1st ` <. ( ( 1st ` ( F ` n ) ) + C ) , ( ( 2nd ` ( F ` n ) ) + C ) >. ) = ( ( 1st ` ( F ` n ) ) + C ) |
| 41 | 39 40 | eqtrdi | |- ( n e. NN -> ( 1st ` ( G ` n ) ) = ( ( 1st ` ( F ` n ) ) + C ) ) |
| 42 | 38 41 | oveq12d | |- ( n e. NN -> ( ( 2nd ` ( G ` n ) ) - ( 1st ` ( G ` n ) ) ) = ( ( ( 2nd ` ( F ` n ) ) + C ) - ( ( 1st ` ( F ` n ) ) + C ) ) ) |
| 43 | 42 | adantl | |- ( ( ph /\ n e. NN ) -> ( ( 2nd ` ( G ` n ) ) - ( 1st ` ( G ` n ) ) ) = ( ( ( 2nd ` ( F ` n ) ) + C ) - ( ( 1st ` ( F ` n ) ) + C ) ) ) |
| 44 | 12 | recnd | |- ( ( ph /\ n e. NN ) -> ( 2nd ` ( F ` n ) ) e. CC ) |
| 45 | 11 | recnd | |- ( ( ph /\ n e. NN ) -> ( 1st ` ( F ` n ) ) e. CC ) |
| 46 | 13 | recnd | |- ( ( ph /\ n e. NN ) -> C e. CC ) |
| 47 | 44 45 46 | pnpcan2d | |- ( ( ph /\ n e. NN ) -> ( ( ( 2nd ` ( F ` n ) ) + C ) - ( ( 1st ` ( F ` n ) ) + C ) ) = ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) ) |
| 48 | 43 47 | eqtrd | |- ( ( ph /\ n e. NN ) -> ( ( 2nd ` ( G ` n ) ) - ( 1st ` ( G ` n ) ) ) = ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) ) |
| 49 | 23 | ovolfsval | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( ( abs o. - ) o. G ) ` n ) = ( ( 2nd ` ( G ` n ) ) - ( 1st ` ( G ` n ) ) ) ) |
| 50 | 22 49 | sylan | |- ( ( ph /\ n e. NN ) -> ( ( ( abs o. - ) o. G ) ` n ) = ( ( 2nd ` ( G ` n ) ) - ( 1st ` ( G ` n ) ) ) ) |
| 51 | 27 | ovolfsval | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( ( abs o. - ) o. F ) ` n ) = ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) ) |
| 52 | 7 51 | sylan | |- ( ( ph /\ n e. NN ) -> ( ( ( abs o. - ) o. F ) ` n ) = ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) ) |
| 53 | 48 50 52 | 3eqtr4d | |- ( ( ph /\ n e. NN ) -> ( ( ( abs o. - ) o. G ) ` n ) = ( ( ( abs o. - ) o. F ) ` n ) ) |
| 54 | 26 30 53 | eqfnfvd | |- ( ph -> ( ( abs o. - ) o. G ) = ( ( abs o. - ) o. F ) ) |
| 55 | 54 | seqeq3d | |- ( ph -> seq 1 ( + , ( ( abs o. - ) o. G ) ) = seq 1 ( + , ( ( abs o. - ) o. F ) ) ) |
| 56 | 55 5 | eqtr4di | |- ( ph -> seq 1 ( + , ( ( abs o. - ) o. G ) ) = S ) |
| 57 | 56 | rneqd | |- ( ph -> ran seq 1 ( + , ( ( abs o. - ) o. G ) ) = ran S ) |
| 58 | 57 | supeq1d | |- ( ph -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) = sup ( ran S , RR* , < ) ) |
| 59 | 3 | eleq2d | |- ( ph -> ( y e. B <-> y e. { x e. RR | ( x - C ) e. A } ) ) |
| 60 | oveq1 | |- ( x = y -> ( x - C ) = ( y - C ) ) |
|
| 61 | 60 | eleq1d | |- ( x = y -> ( ( x - C ) e. A <-> ( y - C ) e. A ) ) |
| 62 | 61 | elrab | |- ( y e. { x e. RR | ( x - C ) e. A } <-> ( y e. RR /\ ( y - C ) e. A ) ) |
| 63 | 59 62 | bitrdi | |- ( ph -> ( y e. B <-> ( y e. RR /\ ( y - C ) e. A ) ) ) |
| 64 | 63 | biimpa | |- ( ( ph /\ y e. B ) -> ( y e. RR /\ ( y - C ) e. A ) ) |
| 65 | breq2 | |- ( x = ( y - C ) -> ( ( 1st ` ( F ` n ) ) < x <-> ( 1st ` ( F ` n ) ) < ( y - C ) ) ) |
|
| 66 | breq1 | |- ( x = ( y - C ) -> ( x < ( 2nd ` ( F ` n ) ) <-> ( y - C ) < ( 2nd ` ( F ` n ) ) ) ) |
|
| 67 | 65 66 | anbi12d | |- ( x = ( y - C ) -> ( ( ( 1st ` ( F ` n ) ) < x /\ x < ( 2nd ` ( F ` n ) ) ) <-> ( ( 1st ` ( F ` n ) ) < ( y - C ) /\ ( y - C ) < ( 2nd ` ( F ` n ) ) ) ) ) |
| 68 | 67 | rexbidv | |- ( x = ( y - C ) -> ( E. n e. NN ( ( 1st ` ( F ` n ) ) < x /\ x < ( 2nd ` ( F ` n ) ) ) <-> E. n e. NN ( ( 1st ` ( F ` n ) ) < ( y - C ) /\ ( y - C ) < ( 2nd ` ( F ` n ) ) ) ) ) |
| 69 | ovolfioo | |- ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U. ran ( (,) o. F ) <-> A. x e. A E. n e. NN ( ( 1st ` ( F ` n ) ) < x /\ x < ( 2nd ` ( F ` n ) ) ) ) ) |
|
| 70 | 1 7 69 | syl2anc | |- ( ph -> ( A C_ U. ran ( (,) o. F ) <-> A. x e. A E. n e. NN ( ( 1st ` ( F ` n ) ) < x /\ x < ( 2nd ` ( F ` n ) ) ) ) ) |
| 71 | 8 70 | mpbid | |- ( ph -> A. x e. A E. n e. NN ( ( 1st ` ( F ` n ) ) < x /\ x < ( 2nd ` ( F ` n ) ) ) ) |
| 72 | 71 | adantr | |- ( ( ph /\ ( y e. RR /\ ( y - C ) e. A ) ) -> A. x e. A E. n e. NN ( ( 1st ` ( F ` n ) ) < x /\ x < ( 2nd ` ( F ` n ) ) ) ) |
| 73 | simprr | |- ( ( ph /\ ( y e. RR /\ ( y - C ) e. A ) ) -> ( y - C ) e. A ) |
|
| 74 | 68 72 73 | rspcdva | |- ( ( ph /\ ( y e. RR /\ ( y - C ) e. A ) ) -> E. n e. NN ( ( 1st ` ( F ` n ) ) < ( y - C ) /\ ( y - C ) < ( 2nd ` ( F ` n ) ) ) ) |
| 75 | 41 | adantl | |- ( ( ( ph /\ ( y e. RR /\ ( y - C ) e. A ) ) /\ n e. NN ) -> ( 1st ` ( G ` n ) ) = ( ( 1st ` ( F ` n ) ) + C ) ) |
| 76 | 75 | breq1d | |- ( ( ( ph /\ ( y e. RR /\ ( y - C ) e. A ) ) /\ n e. NN ) -> ( ( 1st ` ( G ` n ) ) < y <-> ( ( 1st ` ( F ` n ) ) + C ) < y ) ) |
| 77 | 11 | adantlr | |- ( ( ( ph /\ ( y e. RR /\ ( y - C ) e. A ) ) /\ n e. NN ) -> ( 1st ` ( F ` n ) ) e. RR ) |
| 78 | 2 | ad2antrr | |- ( ( ( ph /\ ( y e. RR /\ ( y - C ) e. A ) ) /\ n e. NN ) -> C e. RR ) |
| 79 | simplrl | |- ( ( ( ph /\ ( y e. RR /\ ( y - C ) e. A ) ) /\ n e. NN ) -> y e. RR ) |
|
| 80 | 77 78 79 | ltaddsubd | |- ( ( ( ph /\ ( y e. RR /\ ( y - C ) e. A ) ) /\ n e. NN ) -> ( ( ( 1st ` ( F ` n ) ) + C ) < y <-> ( 1st ` ( F ` n ) ) < ( y - C ) ) ) |
| 81 | 76 80 | bitrd | |- ( ( ( ph /\ ( y e. RR /\ ( y - C ) e. A ) ) /\ n e. NN ) -> ( ( 1st ` ( G ` n ) ) < y <-> ( 1st ` ( F ` n ) ) < ( y - C ) ) ) |
| 82 | 38 | adantl | |- ( ( ( ph /\ ( y e. RR /\ ( y - C ) e. A ) ) /\ n e. NN ) -> ( 2nd ` ( G ` n ) ) = ( ( 2nd ` ( F ` n ) ) + C ) ) |
| 83 | 82 | breq2d | |- ( ( ( ph /\ ( y e. RR /\ ( y - C ) e. A ) ) /\ n e. NN ) -> ( y < ( 2nd ` ( G ` n ) ) <-> y < ( ( 2nd ` ( F ` n ) ) + C ) ) ) |
| 84 | 12 | adantlr | |- ( ( ( ph /\ ( y e. RR /\ ( y - C ) e. A ) ) /\ n e. NN ) -> ( 2nd ` ( F ` n ) ) e. RR ) |
| 85 | 79 78 84 | ltsubaddd | |- ( ( ( ph /\ ( y e. RR /\ ( y - C ) e. A ) ) /\ n e. NN ) -> ( ( y - C ) < ( 2nd ` ( F ` n ) ) <-> y < ( ( 2nd ` ( F ` n ) ) + C ) ) ) |
| 86 | 83 85 | bitr4d | |- ( ( ( ph /\ ( y e. RR /\ ( y - C ) e. A ) ) /\ n e. NN ) -> ( y < ( 2nd ` ( G ` n ) ) <-> ( y - C ) < ( 2nd ` ( F ` n ) ) ) ) |
| 87 | 81 86 | anbi12d | |- ( ( ( ph /\ ( y e. RR /\ ( y - C ) e. A ) ) /\ n e. NN ) -> ( ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) <-> ( ( 1st ` ( F ` n ) ) < ( y - C ) /\ ( y - C ) < ( 2nd ` ( F ` n ) ) ) ) ) |
| 88 | 87 | rexbidva | |- ( ( ph /\ ( y e. RR /\ ( y - C ) e. A ) ) -> ( E. n e. NN ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) <-> E. n e. NN ( ( 1st ` ( F ` n ) ) < ( y - C ) /\ ( y - C ) < ( 2nd ` ( F ` n ) ) ) ) ) |
| 89 | 74 88 | mpbird | |- ( ( ph /\ ( y e. RR /\ ( y - C ) e. A ) ) -> E. n e. NN ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) |
| 90 | 64 89 | syldan | |- ( ( ph /\ y e. B ) -> E. n e. NN ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) |
| 91 | 90 | ralrimiva | |- ( ph -> A. y e. B E. n e. NN ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) |
| 92 | ssrab2 | |- { x e. RR | ( x - C ) e. A } C_ RR |
|
| 93 | 3 92 | eqsstrdi | |- ( ph -> B C_ RR ) |
| 94 | ovolfioo | |- ( ( B C_ RR /\ G : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( B C_ U. ran ( (,) o. G ) <-> A. y e. B E. n e. NN ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) ) |
|
| 95 | 93 22 94 | syl2anc | |- ( ph -> ( B C_ U. ran ( (,) o. G ) <-> A. y e. B E. n e. NN ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) ) |
| 96 | 91 95 | mpbird | |- ( ph -> B C_ U. ran ( (,) o. G ) ) |
| 97 | eqid | |- seq 1 ( + , ( ( abs o. - ) o. G ) ) = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
|
| 98 | 4 97 | elovolmr | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ B C_ U. ran ( (,) o. G ) ) -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) e. M ) |
| 99 | 22 96 98 | syl2anc | |- ( ph -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) e. M ) |
| 100 | 58 99 | eqeltrrd | |- ( ph -> sup ( ran S , RR* , < ) e. M ) |