This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for elementhood in the set M . (Contributed by Mario Carneiro, 16-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elovolm.1 | |- M = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } |
|
| elovolmr.2 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
||
| Assertion | elovolmr | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> sup ( ran S , RR* , < ) e. M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elovolm.1 | |- M = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } |
|
| 2 | elovolmr.2 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
|
| 3 | elovolmlem | |- ( F e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 4 | id | |- ( f = F -> f = F ) |
|
| 5 | 4 | eqcomd | |- ( f = F -> F = f ) |
| 6 | 5 | coeq2d | |- ( f = F -> ( ( abs o. - ) o. F ) = ( ( abs o. - ) o. f ) ) |
| 7 | 6 | seqeq3d | |- ( f = F -> seq 1 ( + , ( ( abs o. - ) o. F ) ) = seq 1 ( + , ( ( abs o. - ) o. f ) ) ) |
| 8 | 2 7 | eqtrid | |- ( f = F -> S = seq 1 ( + , ( ( abs o. - ) o. f ) ) ) |
| 9 | 8 | rneqd | |- ( f = F -> ran S = ran seq 1 ( + , ( ( abs o. - ) o. f ) ) ) |
| 10 | 9 | supeq1d | |- ( f = F -> sup ( ran S , RR* , < ) = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) |
| 11 | 10 | biantrud | |- ( f = F -> ( A C_ U. ran ( (,) o. f ) <-> ( A C_ U. ran ( (,) o. f ) /\ sup ( ran S , RR* , < ) = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) ) |
| 12 | coeq2 | |- ( f = F -> ( (,) o. f ) = ( (,) o. F ) ) |
|
| 13 | 12 | rneqd | |- ( f = F -> ran ( (,) o. f ) = ran ( (,) o. F ) ) |
| 14 | 13 | unieqd | |- ( f = F -> U. ran ( (,) o. f ) = U. ran ( (,) o. F ) ) |
| 15 | 14 | sseq2d | |- ( f = F -> ( A C_ U. ran ( (,) o. f ) <-> A C_ U. ran ( (,) o. F ) ) ) |
| 16 | 11 15 | bitr3d | |- ( f = F -> ( ( A C_ U. ran ( (,) o. f ) /\ sup ( ran S , RR* , < ) = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) <-> A C_ U. ran ( (,) o. F ) ) ) |
| 17 | 16 | rspcev | |- ( ( F e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ A C_ U. ran ( (,) o. F ) ) -> E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ sup ( ran S , RR* , < ) = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) |
| 18 | 3 17 | sylanbr | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ sup ( ran S , RR* , < ) = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) |
| 19 | 1 | elovolm | |- ( sup ( ran S , RR* , < ) e. M <-> E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ sup ( ran S , RR* , < ) = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) |
| 20 | 18 19 | sylibr | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> sup ( ran S , RR* , < ) e. M ) |