This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ovolshft . (Contributed by Mario Carneiro, 22-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolshft.1 | |- ( ph -> A C_ RR ) |
|
| ovolshft.2 | |- ( ph -> C e. RR ) |
||
| ovolshft.3 | |- ( ph -> B = { x e. RR | ( x - C ) e. A } ) |
||
| ovolshft.4 | |- M = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( B C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } |
||
| Assertion | ovolshftlem2 | |- ( ph -> { z e. RR* | E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) ) } C_ M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolshft.1 | |- ( ph -> A C_ RR ) |
|
| 2 | ovolshft.2 | |- ( ph -> C e. RR ) |
|
| 3 | ovolshft.3 | |- ( ph -> B = { x e. RR | ( x - C ) e. A } ) |
|
| 4 | ovolshft.4 | |- M = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( B C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } |
|
| 5 | 1 | ad3antrrr | |- ( ( ( ( ph /\ z e. RR* ) /\ g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) /\ A C_ U. ran ( (,) o. g ) ) -> A C_ RR ) |
| 6 | 2 | ad3antrrr | |- ( ( ( ( ph /\ z e. RR* ) /\ g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) /\ A C_ U. ran ( (,) o. g ) ) -> C e. RR ) |
| 7 | 3 | ad3antrrr | |- ( ( ( ( ph /\ z e. RR* ) /\ g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) /\ A C_ U. ran ( (,) o. g ) ) -> B = { x e. RR | ( x - C ) e. A } ) |
| 8 | eqid | |- seq 1 ( + , ( ( abs o. - ) o. g ) ) = seq 1 ( + , ( ( abs o. - ) o. g ) ) |
|
| 9 | 2fveq3 | |- ( m = n -> ( 1st ` ( g ` m ) ) = ( 1st ` ( g ` n ) ) ) |
|
| 10 | 9 | oveq1d | |- ( m = n -> ( ( 1st ` ( g ` m ) ) + C ) = ( ( 1st ` ( g ` n ) ) + C ) ) |
| 11 | 2fveq3 | |- ( m = n -> ( 2nd ` ( g ` m ) ) = ( 2nd ` ( g ` n ) ) ) |
|
| 12 | 11 | oveq1d | |- ( m = n -> ( ( 2nd ` ( g ` m ) ) + C ) = ( ( 2nd ` ( g ` n ) ) + C ) ) |
| 13 | 10 12 | opeq12d | |- ( m = n -> <. ( ( 1st ` ( g ` m ) ) + C ) , ( ( 2nd ` ( g ` m ) ) + C ) >. = <. ( ( 1st ` ( g ` n ) ) + C ) , ( ( 2nd ` ( g ` n ) ) + C ) >. ) |
| 14 | 13 | cbvmptv | |- ( m e. NN |-> <. ( ( 1st ` ( g ` m ) ) + C ) , ( ( 2nd ` ( g ` m ) ) + C ) >. ) = ( n e. NN |-> <. ( ( 1st ` ( g ` n ) ) + C ) , ( ( 2nd ` ( g ` n ) ) + C ) >. ) |
| 15 | simplr | |- ( ( ( ( ph /\ z e. RR* ) /\ g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) /\ A C_ U. ran ( (,) o. g ) ) -> g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
|
| 16 | elovolmlem | |- ( g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> g : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 17 | 15 16 | sylib | |- ( ( ( ( ph /\ z e. RR* ) /\ g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) /\ A C_ U. ran ( (,) o. g ) ) -> g : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 18 | simpr | |- ( ( ( ( ph /\ z e. RR* ) /\ g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) /\ A C_ U. ran ( (,) o. g ) ) -> A C_ U. ran ( (,) o. g ) ) |
|
| 19 | 5 6 7 4 8 14 17 18 | ovolshftlem1 | |- ( ( ( ( ph /\ z e. RR* ) /\ g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) /\ A C_ U. ran ( (,) o. g ) ) -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) e. M ) |
| 20 | eleq1a | |- ( sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) e. M -> ( z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) -> z e. M ) ) |
|
| 21 | 19 20 | syl | |- ( ( ( ( ph /\ z e. RR* ) /\ g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) /\ A C_ U. ran ( (,) o. g ) ) -> ( z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) -> z e. M ) ) |
| 22 | 21 | expimpd | |- ( ( ( ph /\ z e. RR* ) /\ g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) -> ( ( A C_ U. ran ( (,) o. g ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) ) -> z e. M ) ) |
| 23 | 22 | rexlimdva | |- ( ( ph /\ z e. RR* ) -> ( E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) ) -> z e. M ) ) |
| 24 | 23 | ralrimiva | |- ( ph -> A. z e. RR* ( E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) ) -> z e. M ) ) |
| 25 | rabss | |- ( { z e. RR* | E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) ) } C_ M <-> A. z e. RR* ( E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) ) -> z e. M ) ) |
|
| 26 | 24 25 | sylibr | |- ( ph -> { z e. RR* | E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) ) } C_ M ) |