This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of the ordinal isomorphism when its arguments are not meaningful. (Contributed by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oicl.1 | |- F = OrdIso ( R , A ) |
|
| Assertion | oi0 | |- ( -. ( R We A /\ R Se A ) -> F = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oicl.1 | |- F = OrdIso ( R , A ) |
|
| 2 | df-oi | |- OrdIso ( R , A ) = if ( ( R We A /\ R Se A ) , ( recs ( ( h e. _V |-> ( iota_ v e. { w e. A | A. j e. ran h j R w } A. u e. { w e. A | A. j e. ran h j R w } -. u R v ) ) ) |` { x e. On | E. t e. A A. z e. ( recs ( ( h e. _V |-> ( iota_ v e. { w e. A | A. j e. ran h j R w } A. u e. { w e. A | A. j e. ran h j R w } -. u R v ) ) ) " x ) z R t } ) , (/) ) |
|
| 3 | 1 2 | eqtri | |- F = if ( ( R We A /\ R Se A ) , ( recs ( ( h e. _V |-> ( iota_ v e. { w e. A | A. j e. ran h j R w } A. u e. { w e. A | A. j e. ran h j R w } -. u R v ) ) ) |` { x e. On | E. t e. A A. z e. ( recs ( ( h e. _V |-> ( iota_ v e. { w e. A | A. j e. ran h j R w } A. u e. { w e. A | A. j e. ran h j R w } -. u R v ) ) ) " x ) z R t } ) , (/) ) |
| 4 | iffalse | |- ( -. ( R We A /\ R Se A ) -> if ( ( R We A /\ R Se A ) , ( recs ( ( h e. _V |-> ( iota_ v e. { w e. A | A. j e. ran h j R w } A. u e. { w e. A | A. j e. ran h j R w } -. u R v ) ) ) |` { x e. On | E. t e. A A. z e. ( recs ( ( h e. _V |-> ( iota_ v e. { w e. A | A. j e. ran h j R w } A. u e. { w e. A | A. j e. ran h j R w } -. u R v ) ) ) " x ) z R t } ) , (/) ) = (/) ) |
|
| 5 | 3 4 | eqtrid | |- ( -. ( R We A /\ R Se A ) -> F = (/) ) |