This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Poset extensionality for division. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsext | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( A = B <-> A. x e. NN0 ( A || x <-> B || x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | |- ( A = B -> ( A || x <-> B || x ) ) |
|
| 2 | 1 | ralrimivw | |- ( A = B -> A. x e. NN0 ( A || x <-> B || x ) ) |
| 3 | simpll | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ A. x e. NN0 ( A || x <-> B || x ) ) -> A e. NN0 ) |
|
| 4 | simplr | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ A. x e. NN0 ( A || x <-> B || x ) ) -> B e. NN0 ) |
|
| 5 | nn0z | |- ( B e. NN0 -> B e. ZZ ) |
|
| 6 | iddvds | |- ( B e. ZZ -> B || B ) |
|
| 7 | 5 6 | syl | |- ( B e. NN0 -> B || B ) |
| 8 | 7 | ad2antlr | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ A. x e. NN0 ( A || x <-> B || x ) ) -> B || B ) |
| 9 | breq2 | |- ( x = B -> ( A || x <-> A || B ) ) |
|
| 10 | breq2 | |- ( x = B -> ( B || x <-> B || B ) ) |
|
| 11 | 9 10 | bibi12d | |- ( x = B -> ( ( A || x <-> B || x ) <-> ( A || B <-> B || B ) ) ) |
| 12 | 11 | rspcva | |- ( ( B e. NN0 /\ A. x e. NN0 ( A || x <-> B || x ) ) -> ( A || B <-> B || B ) ) |
| 13 | 12 | adantll | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ A. x e. NN0 ( A || x <-> B || x ) ) -> ( A || B <-> B || B ) ) |
| 14 | 8 13 | mpbird | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ A. x e. NN0 ( A || x <-> B || x ) ) -> A || B ) |
| 15 | nn0z | |- ( A e. NN0 -> A e. ZZ ) |
|
| 16 | iddvds | |- ( A e. ZZ -> A || A ) |
|
| 17 | 15 16 | syl | |- ( A e. NN0 -> A || A ) |
| 18 | 17 | ad2antrr | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ A. x e. NN0 ( A || x <-> B || x ) ) -> A || A ) |
| 19 | breq2 | |- ( x = A -> ( A || x <-> A || A ) ) |
|
| 20 | breq2 | |- ( x = A -> ( B || x <-> B || A ) ) |
|
| 21 | 19 20 | bibi12d | |- ( x = A -> ( ( A || x <-> B || x ) <-> ( A || A <-> B || A ) ) ) |
| 22 | 21 | rspcva | |- ( ( A e. NN0 /\ A. x e. NN0 ( A || x <-> B || x ) ) -> ( A || A <-> B || A ) ) |
| 23 | 22 | adantlr | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ A. x e. NN0 ( A || x <-> B || x ) ) -> ( A || A <-> B || A ) ) |
| 24 | 18 23 | mpbid | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ A. x e. NN0 ( A || x <-> B || x ) ) -> B || A ) |
| 25 | dvdseq | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( A || B /\ B || A ) ) -> A = B ) |
|
| 26 | 3 4 14 24 25 | syl22anc | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ A. x e. NN0 ( A || x <-> B || x ) ) -> A = B ) |
| 27 | 26 | ex | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( A. x e. NN0 ( A || x <-> B || x ) -> A = B ) ) |
| 28 | 2 27 | impbid2 | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( A = B <-> A. x e. NN0 ( A || x <-> B || x ) ) ) |