This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A divisibility equivalent for odmulg . (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsmulgcd | |- ( ( B e. ZZ /\ C e. ZZ ) -> ( A || ( B x. C ) <-> A || ( B x. ( C gcd A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr | |- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) -> C e. ZZ ) |
|
| 2 | dvdszrcl | |- ( A || ( B x. C ) -> ( A e. ZZ /\ ( B x. C ) e. ZZ ) ) |
|
| 3 | 2 | adantl | |- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) -> ( A e. ZZ /\ ( B x. C ) e. ZZ ) ) |
| 4 | 3 | simpld | |- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) -> A e. ZZ ) |
| 5 | bezout | |- ( ( C e. ZZ /\ A e. ZZ ) -> E. x e. ZZ E. y e. ZZ ( C gcd A ) = ( ( C x. x ) + ( A x. y ) ) ) |
|
| 6 | 1 4 5 | syl2anc | |- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) -> E. x e. ZZ E. y e. ZZ ( C gcd A ) = ( ( C x. x ) + ( A x. y ) ) ) |
| 7 | 4 | adantr | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A e. ZZ ) |
| 8 | simplll | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> B e. ZZ ) |
|
| 9 | simpllr | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> C e. ZZ ) |
|
| 10 | simprl | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> x e. ZZ ) |
|
| 11 | 9 10 | zmulcld | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( C x. x ) e. ZZ ) |
| 12 | 8 11 | zmulcld | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( B x. ( C x. x ) ) e. ZZ ) |
| 13 | simprr | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> y e. ZZ ) |
|
| 14 | 7 13 | zmulcld | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( A x. y ) e. ZZ ) |
| 15 | 8 14 | zmulcld | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( B x. ( A x. y ) ) e. ZZ ) |
| 16 | 8 9 | zmulcld | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( B x. C ) e. ZZ ) |
| 17 | simplr | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A || ( B x. C ) ) |
|
| 18 | 7 16 10 17 | dvdsmultr1d | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A || ( ( B x. C ) x. x ) ) |
| 19 | 8 | zcnd | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> B e. CC ) |
| 20 | 9 | zcnd | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> C e. CC ) |
| 21 | 10 | zcnd | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> x e. CC ) |
| 22 | 19 20 21 | mulassd | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( B x. C ) x. x ) = ( B x. ( C x. x ) ) ) |
| 23 | 18 22 | breqtrd | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A || ( B x. ( C x. x ) ) ) |
| 24 | 8 13 | zmulcld | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( B x. y ) e. ZZ ) |
| 25 | dvdsmul1 | |- ( ( A e. ZZ /\ ( B x. y ) e. ZZ ) -> A || ( A x. ( B x. y ) ) ) |
|
| 26 | 7 24 25 | syl2anc | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A || ( A x. ( B x. y ) ) ) |
| 27 | 7 | zcnd | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A e. CC ) |
| 28 | 13 | zcnd | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> y e. CC ) |
| 29 | 19 27 28 | mul12d | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( B x. ( A x. y ) ) = ( A x. ( B x. y ) ) ) |
| 30 | 26 29 | breqtrrd | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A || ( B x. ( A x. y ) ) ) |
| 31 | 7 12 15 23 30 | dvds2addd | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A || ( ( B x. ( C x. x ) ) + ( B x. ( A x. y ) ) ) ) |
| 32 | 11 | zcnd | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( C x. x ) e. CC ) |
| 33 | 14 | zcnd | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( A x. y ) e. CC ) |
| 34 | 19 32 33 | adddid | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( B x. ( ( C x. x ) + ( A x. y ) ) ) = ( ( B x. ( C x. x ) ) + ( B x. ( A x. y ) ) ) ) |
| 35 | 31 34 | breqtrrd | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A || ( B x. ( ( C x. x ) + ( A x. y ) ) ) ) |
| 36 | oveq2 | |- ( ( C gcd A ) = ( ( C x. x ) + ( A x. y ) ) -> ( B x. ( C gcd A ) ) = ( B x. ( ( C x. x ) + ( A x. y ) ) ) ) |
|
| 37 | 36 | breq2d | |- ( ( C gcd A ) = ( ( C x. x ) + ( A x. y ) ) -> ( A || ( B x. ( C gcd A ) ) <-> A || ( B x. ( ( C x. x ) + ( A x. y ) ) ) ) ) |
| 38 | 35 37 | syl5ibrcom | |- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( C gcd A ) = ( ( C x. x ) + ( A x. y ) ) -> A || ( B x. ( C gcd A ) ) ) ) |
| 39 | 38 | rexlimdvva | |- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) -> ( E. x e. ZZ E. y e. ZZ ( C gcd A ) = ( ( C x. x ) + ( A x. y ) ) -> A || ( B x. ( C gcd A ) ) ) ) |
| 40 | 6 39 | mpd | |- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) -> A || ( B x. ( C gcd A ) ) ) |
| 41 | dvdszrcl | |- ( A || ( B x. ( C gcd A ) ) -> ( A e. ZZ /\ ( B x. ( C gcd A ) ) e. ZZ ) ) |
|
| 42 | 41 | adantl | |- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> ( A e. ZZ /\ ( B x. ( C gcd A ) ) e. ZZ ) ) |
| 43 | 42 | simpld | |- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> A e. ZZ ) |
| 44 | 42 | simprd | |- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> ( B x. ( C gcd A ) ) e. ZZ ) |
| 45 | zmulcl | |- ( ( B e. ZZ /\ C e. ZZ ) -> ( B x. C ) e. ZZ ) |
|
| 46 | 45 | adantr | |- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> ( B x. C ) e. ZZ ) |
| 47 | simpr | |- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> A || ( B x. ( C gcd A ) ) ) |
|
| 48 | simplr | |- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> C e. ZZ ) |
|
| 49 | gcddvds | |- ( ( C e. ZZ /\ A e. ZZ ) -> ( ( C gcd A ) || C /\ ( C gcd A ) || A ) ) |
|
| 50 | 48 43 49 | syl2anc | |- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> ( ( C gcd A ) || C /\ ( C gcd A ) || A ) ) |
| 51 | 50 | simpld | |- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> ( C gcd A ) || C ) |
| 52 | 48 43 | gcdcld | |- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> ( C gcd A ) e. NN0 ) |
| 53 | 52 | nn0zd | |- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> ( C gcd A ) e. ZZ ) |
| 54 | simpll | |- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> B e. ZZ ) |
|
| 55 | dvdscmul | |- ( ( ( C gcd A ) e. ZZ /\ C e. ZZ /\ B e. ZZ ) -> ( ( C gcd A ) || C -> ( B x. ( C gcd A ) ) || ( B x. C ) ) ) |
|
| 56 | 53 48 54 55 | syl3anc | |- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> ( ( C gcd A ) || C -> ( B x. ( C gcd A ) ) || ( B x. C ) ) ) |
| 57 | 51 56 | mpd | |- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> ( B x. ( C gcd A ) ) || ( B x. C ) ) |
| 58 | 43 44 46 47 57 | dvdstrd | |- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> A || ( B x. C ) ) |
| 59 | 40 58 | impbida | |- ( ( B e. ZZ /\ C e. ZZ ) -> ( A || ( B x. C ) <-> A || ( B x. ( C gcd A ) ) ) ) |