This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The gcd of two integers is zero iff they are both zero. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcdeq0 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) = 0 <-> ( M = 0 /\ N = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdn0cl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) e. NN ) |
|
| 2 | 1 | nnne0d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) =/= 0 ) |
| 3 | 2 | ex | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 /\ N = 0 ) -> ( M gcd N ) =/= 0 ) ) |
| 4 | 3 | necon4bd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) = 0 -> ( M = 0 /\ N = 0 ) ) ) |
| 5 | oveq12 | |- ( ( M = 0 /\ N = 0 ) -> ( M gcd N ) = ( 0 gcd 0 ) ) |
|
| 6 | gcd0val | |- ( 0 gcd 0 ) = 0 |
|
| 7 | 5 6 | eqtrdi | |- ( ( M = 0 /\ N = 0 ) -> ( M gcd N ) = 0 ) |
| 8 | 4 7 | impbid1 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) = 0 <-> ( M = 0 /\ N = 0 ) ) ) |