This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relationship between the order of a multiple and the order of the basepoint. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odmulgid.1 | |- X = ( Base ` G ) |
|
| odmulgid.2 | |- O = ( od ` G ) |
||
| odmulgid.3 | |- .x. = ( .g ` G ) |
||
| Assertion | odmulgid | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( O ` ( N .x. A ) ) || K <-> ( O ` A ) || ( K x. N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odmulgid.1 | |- X = ( Base ` G ) |
|
| 2 | odmulgid.2 | |- O = ( od ` G ) |
|
| 3 | odmulgid.3 | |- .x. = ( .g ` G ) |
|
| 4 | simpl1 | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ K e. ZZ ) -> G e. Grp ) |
|
| 5 | simpr | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ K e. ZZ ) -> K e. ZZ ) |
|
| 6 | simpl3 | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ K e. ZZ ) -> N e. ZZ ) |
|
| 7 | simpl2 | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ K e. ZZ ) -> A e. X ) |
|
| 8 | 1 3 | mulgass | |- ( ( G e. Grp /\ ( K e. ZZ /\ N e. ZZ /\ A e. X ) ) -> ( ( K x. N ) .x. A ) = ( K .x. ( N .x. A ) ) ) |
| 9 | 4 5 6 7 8 | syl13anc | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( K x. N ) .x. A ) = ( K .x. ( N .x. A ) ) ) |
| 10 | 9 | eqeq1d | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( ( K x. N ) .x. A ) = ( 0g ` G ) <-> ( K .x. ( N .x. A ) ) = ( 0g ` G ) ) ) |
| 11 | 5 6 | zmulcld | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ K e. ZZ ) -> ( K x. N ) e. ZZ ) |
| 12 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 13 | 1 2 3 12 | oddvds | |- ( ( G e. Grp /\ A e. X /\ ( K x. N ) e. ZZ ) -> ( ( O ` A ) || ( K x. N ) <-> ( ( K x. N ) .x. A ) = ( 0g ` G ) ) ) |
| 14 | 4 7 11 13 | syl3anc | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( O ` A ) || ( K x. N ) <-> ( ( K x. N ) .x. A ) = ( 0g ` G ) ) ) |
| 15 | 1 3 | mulgcl | |- ( ( G e. Grp /\ N e. ZZ /\ A e. X ) -> ( N .x. A ) e. X ) |
| 16 | 4 6 7 15 | syl3anc | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ K e. ZZ ) -> ( N .x. A ) e. X ) |
| 17 | 1 2 3 12 | oddvds | |- ( ( G e. Grp /\ ( N .x. A ) e. X /\ K e. ZZ ) -> ( ( O ` ( N .x. A ) ) || K <-> ( K .x. ( N .x. A ) ) = ( 0g ` G ) ) ) |
| 18 | 4 16 5 17 | syl3anc | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( O ` ( N .x. A ) ) || K <-> ( K .x. ( N .x. A ) ) = ( 0g ` G ) ) ) |
| 19 | 10 14 18 | 3bitr4rd | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( O ` ( N .x. A ) ) || K <-> ( O ` A ) || ( K x. N ) ) ) |