This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A multiple of a point of finite order only has the same order if the multiplier is relatively prime. (Contributed by Stefan O'Rear, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odmulgid.1 | |- X = ( Base ` G ) |
|
| odmulgid.2 | |- O = ( od ` G ) |
||
| odmulgid.3 | |- .x. = ( .g ` G ) |
||
| Assertion | odmulgeq | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( O ` ( N .x. A ) ) = ( O ` A ) <-> ( N gcd ( O ` A ) ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odmulgid.1 | |- X = ( Base ` G ) |
|
| 2 | odmulgid.2 | |- O = ( od ` G ) |
|
| 3 | odmulgid.3 | |- .x. = ( .g ` G ) |
|
| 4 | eqcom | |- ( ( O ` ( N .x. A ) ) = ( O ` A ) <-> ( O ` A ) = ( O ` ( N .x. A ) ) ) |
|
| 5 | simpl2 | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> A e. X ) |
|
| 6 | 1 2 | odcl | |- ( A e. X -> ( O ` A ) e. NN0 ) |
| 7 | 5 6 | syl | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( O ` A ) e. NN0 ) |
| 8 | 7 | nn0cnd | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( O ` A ) e. CC ) |
| 9 | simpl1 | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> G e. Grp ) |
|
| 10 | simpl3 | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> N e. ZZ ) |
|
| 11 | 1 3 | mulgcl | |- ( ( G e. Grp /\ N e. ZZ /\ A e. X ) -> ( N .x. A ) e. X ) |
| 12 | 9 10 5 11 | syl3anc | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( N .x. A ) e. X ) |
| 13 | 1 2 | odcl | |- ( ( N .x. A ) e. X -> ( O ` ( N .x. A ) ) e. NN0 ) |
| 14 | 12 13 | syl | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( O ` ( N .x. A ) ) e. NN0 ) |
| 15 | 14 | nn0cnd | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( O ` ( N .x. A ) ) e. CC ) |
| 16 | nnne0 | |- ( ( O ` A ) e. NN -> ( O ` A ) =/= 0 ) |
|
| 17 | 16 | adantl | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( O ` A ) =/= 0 ) |
| 18 | 1 2 3 | odmulg2 | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( O ` ( N .x. A ) ) || ( O ` A ) ) |
| 19 | 18 | adantr | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( O ` ( N .x. A ) ) || ( O ` A ) ) |
| 20 | breq1 | |- ( ( O ` ( N .x. A ) ) = 0 -> ( ( O ` ( N .x. A ) ) || ( O ` A ) <-> 0 || ( O ` A ) ) ) |
|
| 21 | 19 20 | syl5ibcom | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( O ` ( N .x. A ) ) = 0 -> 0 || ( O ` A ) ) ) |
| 22 | 7 | nn0zd | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( O ` A ) e. ZZ ) |
| 23 | 0dvds | |- ( ( O ` A ) e. ZZ -> ( 0 || ( O ` A ) <-> ( O ` A ) = 0 ) ) |
|
| 24 | 22 23 | syl | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( 0 || ( O ` A ) <-> ( O ` A ) = 0 ) ) |
| 25 | 21 24 | sylibd | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( O ` ( N .x. A ) ) = 0 -> ( O ` A ) = 0 ) ) |
| 26 | 25 | necon3d | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) =/= 0 -> ( O ` ( N .x. A ) ) =/= 0 ) ) |
| 27 | 17 26 | mpd | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( O ` ( N .x. A ) ) =/= 0 ) |
| 28 | 8 15 27 | diveq1ad | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( ( O ` A ) / ( O ` ( N .x. A ) ) ) = 1 <-> ( O ` A ) = ( O ` ( N .x. A ) ) ) ) |
| 29 | 10 22 | gcdcld | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( N gcd ( O ` A ) ) e. NN0 ) |
| 30 | 29 | nn0cnd | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( N gcd ( O ` A ) ) e. CC ) |
| 31 | 15 30 | mulcomd | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( O ` ( N .x. A ) ) x. ( N gcd ( O ` A ) ) ) = ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) ) |
| 32 | 1 2 3 | odmulg | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( O ` A ) = ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) ) |
| 33 | 32 | adantr | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( O ` A ) = ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) ) |
| 34 | 31 33 | eqtr4d | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( O ` ( N .x. A ) ) x. ( N gcd ( O ` A ) ) ) = ( O ` A ) ) |
| 35 | 8 15 30 27 | divmuld | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( ( O ` A ) / ( O ` ( N .x. A ) ) ) = ( N gcd ( O ` A ) ) <-> ( ( O ` ( N .x. A ) ) x. ( N gcd ( O ` A ) ) ) = ( O ` A ) ) ) |
| 36 | 34 35 | mpbird | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) / ( O ` ( N .x. A ) ) ) = ( N gcd ( O ` A ) ) ) |
| 37 | 36 | eqeq1d | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( ( O ` A ) / ( O ` ( N .x. A ) ) ) = 1 <-> ( N gcd ( O ` A ) ) = 1 ) ) |
| 38 | 28 37 | bitr3d | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) = ( O ` ( N .x. A ) ) <-> ( N gcd ( O ` A ) ) = 1 ) ) |
| 39 | 4 38 | bitrid | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( O ` ( N .x. A ) ) = ( O ` A ) <-> ( N gcd ( O ` A ) ) = 1 ) ) |