This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the predicate " R is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | istrg.1 | |- M = ( mulGrp ` R ) |
|
| istdrg.1 | |- U = ( Unit ` R ) |
||
| Assertion | istdrg | |- ( R e. TopDRing <-> ( R e. TopRing /\ R e. DivRing /\ ( M |`s U ) e. TopGrp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istrg.1 | |- M = ( mulGrp ` R ) |
|
| 2 | istdrg.1 | |- U = ( Unit ` R ) |
|
| 3 | elin | |- ( R e. ( TopRing i^i DivRing ) <-> ( R e. TopRing /\ R e. DivRing ) ) |
|
| 4 | 3 | anbi1i | |- ( ( R e. ( TopRing i^i DivRing ) /\ ( M |`s U ) e. TopGrp ) <-> ( ( R e. TopRing /\ R e. DivRing ) /\ ( M |`s U ) e. TopGrp ) ) |
| 5 | fveq2 | |- ( r = R -> ( mulGrp ` r ) = ( mulGrp ` R ) ) |
|
| 6 | 5 1 | eqtr4di | |- ( r = R -> ( mulGrp ` r ) = M ) |
| 7 | fveq2 | |- ( r = R -> ( Unit ` r ) = ( Unit ` R ) ) |
|
| 8 | 7 2 | eqtr4di | |- ( r = R -> ( Unit ` r ) = U ) |
| 9 | 6 8 | oveq12d | |- ( r = R -> ( ( mulGrp ` r ) |`s ( Unit ` r ) ) = ( M |`s U ) ) |
| 10 | 9 | eleq1d | |- ( r = R -> ( ( ( mulGrp ` r ) |`s ( Unit ` r ) ) e. TopGrp <-> ( M |`s U ) e. TopGrp ) ) |
| 11 | df-tdrg | |- TopDRing = { r e. ( TopRing i^i DivRing ) | ( ( mulGrp ` r ) |`s ( Unit ` r ) ) e. TopGrp } |
|
| 12 | 10 11 | elrab2 | |- ( R e. TopDRing <-> ( R e. ( TopRing i^i DivRing ) /\ ( M |`s U ) e. TopGrp ) ) |
| 13 | df-3an | |- ( ( R e. TopRing /\ R e. DivRing /\ ( M |`s U ) e. TopGrp ) <-> ( ( R e. TopRing /\ R e. DivRing ) /\ ( M |`s U ) e. TopGrp ) ) |
|
| 14 | 4 12 13 | 3bitr4i | |- ( R e. TopDRing <-> ( R e. TopRing /\ R e. DivRing /\ ( M |`s U ) e. TopGrp ) ) |