This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a topological group". Definition 1 of BourbakiTop1 p. III.1. (Contributed by FL, 18-Apr-2010) (Revised by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | istgp.1 | |- J = ( TopOpen ` G ) |
|
| istgp.2 | |- I = ( invg ` G ) |
||
| Assertion | istgp | |- ( G e. TopGrp <-> ( G e. Grp /\ G e. TopMnd /\ I e. ( J Cn J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istgp.1 | |- J = ( TopOpen ` G ) |
|
| 2 | istgp.2 | |- I = ( invg ` G ) |
|
| 3 | elin | |- ( G e. ( Grp i^i TopMnd ) <-> ( G e. Grp /\ G e. TopMnd ) ) |
|
| 4 | 3 | anbi1i | |- ( ( G e. ( Grp i^i TopMnd ) /\ I e. ( J Cn J ) ) <-> ( ( G e. Grp /\ G e. TopMnd ) /\ I e. ( J Cn J ) ) ) |
| 5 | fvexd | |- ( f = G -> ( TopOpen ` f ) e. _V ) |
|
| 6 | simpl | |- ( ( f = G /\ j = ( TopOpen ` f ) ) -> f = G ) |
|
| 7 | 6 | fveq2d | |- ( ( f = G /\ j = ( TopOpen ` f ) ) -> ( invg ` f ) = ( invg ` G ) ) |
| 8 | 7 2 | eqtr4di | |- ( ( f = G /\ j = ( TopOpen ` f ) ) -> ( invg ` f ) = I ) |
| 9 | id | |- ( j = ( TopOpen ` f ) -> j = ( TopOpen ` f ) ) |
|
| 10 | fveq2 | |- ( f = G -> ( TopOpen ` f ) = ( TopOpen ` G ) ) |
|
| 11 | 10 1 | eqtr4di | |- ( f = G -> ( TopOpen ` f ) = J ) |
| 12 | 9 11 | sylan9eqr | |- ( ( f = G /\ j = ( TopOpen ` f ) ) -> j = J ) |
| 13 | 12 12 | oveq12d | |- ( ( f = G /\ j = ( TopOpen ` f ) ) -> ( j Cn j ) = ( J Cn J ) ) |
| 14 | 8 13 | eleq12d | |- ( ( f = G /\ j = ( TopOpen ` f ) ) -> ( ( invg ` f ) e. ( j Cn j ) <-> I e. ( J Cn J ) ) ) |
| 15 | 5 14 | sbcied | |- ( f = G -> ( [. ( TopOpen ` f ) / j ]. ( invg ` f ) e. ( j Cn j ) <-> I e. ( J Cn J ) ) ) |
| 16 | df-tgp | |- TopGrp = { f e. ( Grp i^i TopMnd ) | [. ( TopOpen ` f ) / j ]. ( invg ` f ) e. ( j Cn j ) } |
|
| 17 | 15 16 | elrab2 | |- ( G e. TopGrp <-> ( G e. ( Grp i^i TopMnd ) /\ I e. ( J Cn J ) ) ) |
| 18 | df-3an | |- ( ( G e. Grp /\ G e. TopMnd /\ I e. ( J Cn J ) ) <-> ( ( G e. Grp /\ G e. TopMnd ) /\ I e. ( J Cn J ) ) ) |
|
| 19 | 4 17 18 | 3bitr4i | |- ( G e. TopGrp <-> ( G e. Grp /\ G e. TopMnd /\ I e. ( J Cn J ) ) ) |