This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A submonoid of a topological monoid is a topological monoid. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subgtgp.h | |- H = ( G |`s S ) |
|
| Assertion | submtmd | |- ( ( G e. TopMnd /\ S e. ( SubMnd ` G ) ) -> H e. TopMnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgtgp.h | |- H = ( G |`s S ) |
|
| 2 | 1 | submmnd | |- ( S e. ( SubMnd ` G ) -> H e. Mnd ) |
| 3 | 2 | adantl | |- ( ( G e. TopMnd /\ S e. ( SubMnd ` G ) ) -> H e. Mnd ) |
| 4 | tmdtps | |- ( G e. TopMnd -> G e. TopSp ) |
|
| 5 | resstps | |- ( ( G e. TopSp /\ S e. ( SubMnd ` G ) ) -> ( G |`s S ) e. TopSp ) |
|
| 6 | 4 5 | sylan | |- ( ( G e. TopMnd /\ S e. ( SubMnd ` G ) ) -> ( G |`s S ) e. TopSp ) |
| 7 | 1 6 | eqeltrid | |- ( ( G e. TopMnd /\ S e. ( SubMnd ` G ) ) -> H e. TopSp ) |
| 8 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 9 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 10 | eqid | |- ( +f ` H ) = ( +f ` H ) |
|
| 11 | 8 9 10 | plusffval | |- ( +f ` H ) = ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> ( x ( +g ` H ) y ) ) |
| 12 | 1 | submbas | |- ( S e. ( SubMnd ` G ) -> S = ( Base ` H ) ) |
| 13 | 12 | adantl | |- ( ( G e. TopMnd /\ S e. ( SubMnd ` G ) ) -> S = ( Base ` H ) ) |
| 14 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 15 | 1 14 | ressplusg | |- ( S e. ( SubMnd ` G ) -> ( +g ` G ) = ( +g ` H ) ) |
| 16 | 15 | adantl | |- ( ( G e. TopMnd /\ S e. ( SubMnd ` G ) ) -> ( +g ` G ) = ( +g ` H ) ) |
| 17 | 16 | oveqd | |- ( ( G e. TopMnd /\ S e. ( SubMnd ` G ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` H ) y ) ) |
| 18 | 13 13 17 | mpoeq123dv | |- ( ( G e. TopMnd /\ S e. ( SubMnd ` G ) ) -> ( x e. S , y e. S |-> ( x ( +g ` G ) y ) ) = ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> ( x ( +g ` H ) y ) ) ) |
| 19 | 11 18 | eqtr4id | |- ( ( G e. TopMnd /\ S e. ( SubMnd ` G ) ) -> ( +f ` H ) = ( x e. S , y e. S |-> ( x ( +g ` G ) y ) ) ) |
| 20 | eqid | |- ( ( TopOpen ` G ) |`t S ) = ( ( TopOpen ` G ) |`t S ) |
|
| 21 | eqid | |- ( TopOpen ` G ) = ( TopOpen ` G ) |
|
| 22 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 23 | 21 22 | tmdtopon | |- ( G e. TopMnd -> ( TopOpen ` G ) e. ( TopOn ` ( Base ` G ) ) ) |
| 24 | 23 | adantr | |- ( ( G e. TopMnd /\ S e. ( SubMnd ` G ) ) -> ( TopOpen ` G ) e. ( TopOn ` ( Base ` G ) ) ) |
| 25 | 22 | submss | |- ( S e. ( SubMnd ` G ) -> S C_ ( Base ` G ) ) |
| 26 | 25 | adantl | |- ( ( G e. TopMnd /\ S e. ( SubMnd ` G ) ) -> S C_ ( Base ` G ) ) |
| 27 | eqid | |- ( +f ` G ) = ( +f ` G ) |
|
| 28 | 22 14 27 | plusffval | |- ( +f ` G ) = ( x e. ( Base ` G ) , y e. ( Base ` G ) |-> ( x ( +g ` G ) y ) ) |
| 29 | 21 27 | tmdcn | |- ( G e. TopMnd -> ( +f ` G ) e. ( ( ( TopOpen ` G ) tX ( TopOpen ` G ) ) Cn ( TopOpen ` G ) ) ) |
| 30 | 28 29 | eqeltrrid | |- ( G e. TopMnd -> ( x e. ( Base ` G ) , y e. ( Base ` G ) |-> ( x ( +g ` G ) y ) ) e. ( ( ( TopOpen ` G ) tX ( TopOpen ` G ) ) Cn ( TopOpen ` G ) ) ) |
| 31 | 30 | adantr | |- ( ( G e. TopMnd /\ S e. ( SubMnd ` G ) ) -> ( x e. ( Base ` G ) , y e. ( Base ` G ) |-> ( x ( +g ` G ) y ) ) e. ( ( ( TopOpen ` G ) tX ( TopOpen ` G ) ) Cn ( TopOpen ` G ) ) ) |
| 32 | 20 24 26 20 24 26 31 | cnmpt2res | |- ( ( G e. TopMnd /\ S e. ( SubMnd ` G ) ) -> ( x e. S , y e. S |-> ( x ( +g ` G ) y ) ) e. ( ( ( ( TopOpen ` G ) |`t S ) tX ( ( TopOpen ` G ) |`t S ) ) Cn ( TopOpen ` G ) ) ) |
| 33 | 19 32 | eqeltrd | |- ( ( G e. TopMnd /\ S e. ( SubMnd ` G ) ) -> ( +f ` H ) e. ( ( ( ( TopOpen ` G ) |`t S ) tX ( ( TopOpen ` G ) |`t S ) ) Cn ( TopOpen ` G ) ) ) |
| 34 | 8 10 | mndplusf | |- ( H e. Mnd -> ( +f ` H ) : ( ( Base ` H ) X. ( Base ` H ) ) --> ( Base ` H ) ) |
| 35 | frn | |- ( ( +f ` H ) : ( ( Base ` H ) X. ( Base ` H ) ) --> ( Base ` H ) -> ran ( +f ` H ) C_ ( Base ` H ) ) |
|
| 36 | 3 34 35 | 3syl | |- ( ( G e. TopMnd /\ S e. ( SubMnd ` G ) ) -> ran ( +f ` H ) C_ ( Base ` H ) ) |
| 37 | 36 13 | sseqtrrd | |- ( ( G e. TopMnd /\ S e. ( SubMnd ` G ) ) -> ran ( +f ` H ) C_ S ) |
| 38 | cnrest2 | |- ( ( ( TopOpen ` G ) e. ( TopOn ` ( Base ` G ) ) /\ ran ( +f ` H ) C_ S /\ S C_ ( Base ` G ) ) -> ( ( +f ` H ) e. ( ( ( ( TopOpen ` G ) |`t S ) tX ( ( TopOpen ` G ) |`t S ) ) Cn ( TopOpen ` G ) ) <-> ( +f ` H ) e. ( ( ( ( TopOpen ` G ) |`t S ) tX ( ( TopOpen ` G ) |`t S ) ) Cn ( ( TopOpen ` G ) |`t S ) ) ) ) |
|
| 39 | 24 37 26 38 | syl3anc | |- ( ( G e. TopMnd /\ S e. ( SubMnd ` G ) ) -> ( ( +f ` H ) e. ( ( ( ( TopOpen ` G ) |`t S ) tX ( ( TopOpen ` G ) |`t S ) ) Cn ( TopOpen ` G ) ) <-> ( +f ` H ) e. ( ( ( ( TopOpen ` G ) |`t S ) tX ( ( TopOpen ` G ) |`t S ) ) Cn ( ( TopOpen ` G ) |`t S ) ) ) ) |
| 40 | 33 39 | mpbid | |- ( ( G e. TopMnd /\ S e. ( SubMnd ` G ) ) -> ( +f ` H ) e. ( ( ( ( TopOpen ` G ) |`t S ) tX ( ( TopOpen ` G ) |`t S ) ) Cn ( ( TopOpen ` G ) |`t S ) ) ) |
| 41 | 1 21 | resstopn | |- ( ( TopOpen ` G ) |`t S ) = ( TopOpen ` H ) |
| 42 | 10 41 | istmd | |- ( H e. TopMnd <-> ( H e. Mnd /\ H e. TopSp /\ ( +f ` H ) e. ( ( ( ( TopOpen ` G ) |`t S ) tX ( ( TopOpen ` G ) |`t S ) ) Cn ( ( TopOpen ` G ) |`t S ) ) ) ) |
| 43 | 3 7 40 42 | syl3anbrc | |- ( ( G e. TopMnd /\ S e. ( SubMnd ` G ) ) -> H e. TopMnd ) |