This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normed ring is a topological ring. (Contributed by Mario Carneiro, 4-Oct-2015) (Proof shortened by AV, 31-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nrgtrg | |- ( R e. NrmRing -> R e. TopRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrgtgp | |- ( R e. NrmRing -> R e. TopGrp ) |
|
| 2 | nrgring | |- ( R e. NrmRing -> R e. Ring ) |
|
| 3 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 4 | 3 | ringmgp | |- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 5 | 2 4 | syl | |- ( R e. NrmRing -> ( mulGrp ` R ) e. Mnd ) |
| 6 | tgptps | |- ( R e. TopGrp -> R e. TopSp ) |
|
| 7 | 1 6 | syl | |- ( R e. NrmRing -> R e. TopSp ) |
| 8 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 9 | eqid | |- ( TopOpen ` R ) = ( TopOpen ` R ) |
|
| 10 | 8 9 | istps | |- ( R e. TopSp <-> ( TopOpen ` R ) e. ( TopOn ` ( Base ` R ) ) ) |
| 11 | 7 10 | sylib | |- ( R e. NrmRing -> ( TopOpen ` R ) e. ( TopOn ` ( Base ` R ) ) ) |
| 12 | 3 8 | mgpbas | |- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
| 13 | 3 9 | mgptopn | |- ( TopOpen ` R ) = ( TopOpen ` ( mulGrp ` R ) ) |
| 14 | 12 13 | istps | |- ( ( mulGrp ` R ) e. TopSp <-> ( TopOpen ` R ) e. ( TopOn ` ( Base ` R ) ) ) |
| 15 | 11 14 | sylibr | |- ( R e. NrmRing -> ( mulGrp ` R ) e. TopSp ) |
| 16 | rlmnlm | |- ( R e. NrmRing -> ( ringLMod ` R ) e. NrmMod ) |
|
| 17 | rlmsca2 | |- ( _I ` R ) = ( Scalar ` ( ringLMod ` R ) ) |
|
| 18 | rlmscaf | |- ( +f ` ( mulGrp ` R ) ) = ( .sf ` ( ringLMod ` R ) ) |
|
| 19 | rlmtopn | |- ( TopOpen ` R ) = ( TopOpen ` ( ringLMod ` R ) ) |
|
| 20 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 21 | 20 8 | strfvi | |- ( Base ` R ) = ( Base ` ( _I ` R ) ) |
| 22 | 21 | a1i | |- ( T. -> ( Base ` R ) = ( Base ` ( _I ` R ) ) ) |
| 23 | tsetid | |- TopSet = Slot ( TopSet ` ndx ) |
|
| 24 | eqid | |- ( TopSet ` R ) = ( TopSet ` R ) |
|
| 25 | 23 24 | strfvi | |- ( TopSet ` R ) = ( TopSet ` ( _I ` R ) ) |
| 26 | 25 | a1i | |- ( T. -> ( TopSet ` R ) = ( TopSet ` ( _I ` R ) ) ) |
| 27 | 22 26 | topnpropd | |- ( T. -> ( TopOpen ` R ) = ( TopOpen ` ( _I ` R ) ) ) |
| 28 | 27 | mptru | |- ( TopOpen ` R ) = ( TopOpen ` ( _I ` R ) ) |
| 29 | 17 18 19 28 | nlmvscn | |- ( ( ringLMod ` R ) e. NrmMod -> ( +f ` ( mulGrp ` R ) ) e. ( ( ( TopOpen ` R ) tX ( TopOpen ` R ) ) Cn ( TopOpen ` R ) ) ) |
| 30 | 16 29 | syl | |- ( R e. NrmRing -> ( +f ` ( mulGrp ` R ) ) e. ( ( ( TopOpen ` R ) tX ( TopOpen ` R ) ) Cn ( TopOpen ` R ) ) ) |
| 31 | eqid | |- ( +f ` ( mulGrp ` R ) ) = ( +f ` ( mulGrp ` R ) ) |
|
| 32 | 31 13 | istmd | |- ( ( mulGrp ` R ) e. TopMnd <-> ( ( mulGrp ` R ) e. Mnd /\ ( mulGrp ` R ) e. TopSp /\ ( +f ` ( mulGrp ` R ) ) e. ( ( ( TopOpen ` R ) tX ( TopOpen ` R ) ) Cn ( TopOpen ` R ) ) ) ) |
| 33 | 5 15 30 32 | syl3anbrc | |- ( R e. NrmRing -> ( mulGrp ` R ) e. TopMnd ) |
| 34 | 3 | istrg | |- ( R e. TopRing <-> ( R e. TopGrp /\ R e. Ring /\ ( mulGrp ` R ) e. TopMnd ) ) |
| 35 | 1 2 33 34 | syl3anbrc | |- ( R e. NrmRing -> R e. TopRing ) |