This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normed module is a topological module. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nlmtlm | |- ( W e. NrmMod -> W e. TopMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlmngp | |- ( W e. NrmMod -> W e. NrmGrp ) |
|
| 2 | nlmlmod | |- ( W e. NrmMod -> W e. LMod ) |
|
| 3 | lmodabl | |- ( W e. LMod -> W e. Abel ) |
|
| 4 | 2 3 | syl | |- ( W e. NrmMod -> W e. Abel ) |
| 5 | ngptgp | |- ( ( W e. NrmGrp /\ W e. Abel ) -> W e. TopGrp ) |
|
| 6 | 1 4 5 | syl2anc | |- ( W e. NrmMod -> W e. TopGrp ) |
| 7 | tgptmd | |- ( W e. TopGrp -> W e. TopMnd ) |
|
| 8 | 6 7 | syl | |- ( W e. NrmMod -> W e. TopMnd ) |
| 9 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 10 | 9 | nlmnrg | |- ( W e. NrmMod -> ( Scalar ` W ) e. NrmRing ) |
| 11 | nrgtrg | |- ( ( Scalar ` W ) e. NrmRing -> ( Scalar ` W ) e. TopRing ) |
|
| 12 | 10 11 | syl | |- ( W e. NrmMod -> ( Scalar ` W ) e. TopRing ) |
| 13 | 8 2 12 | 3jca | |- ( W e. NrmMod -> ( W e. TopMnd /\ W e. LMod /\ ( Scalar ` W ) e. TopRing ) ) |
| 14 | eqid | |- ( .sf ` W ) = ( .sf ` W ) |
|
| 15 | eqid | |- ( TopOpen ` W ) = ( TopOpen ` W ) |
|
| 16 | eqid | |- ( TopOpen ` ( Scalar ` W ) ) = ( TopOpen ` ( Scalar ` W ) ) |
|
| 17 | 9 14 15 16 | nlmvscn | |- ( W e. NrmMod -> ( .sf ` W ) e. ( ( ( TopOpen ` ( Scalar ` W ) ) tX ( TopOpen ` W ) ) Cn ( TopOpen ` W ) ) ) |
| 18 | 14 15 9 16 | istlm | |- ( W e. TopMod <-> ( ( W e. TopMnd /\ W e. LMod /\ ( Scalar ` W ) e. TopRing ) /\ ( .sf ` W ) e. ( ( ( TopOpen ` ( Scalar ` W ) ) tX ( TopOpen ` W ) ) Cn ( TopOpen ` W ) ) ) ) |
| 19 | 13 17 18 | sylanbrc | |- ( W e. NrmMod -> W e. TopMod ) |