This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of Beran p. 99. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmcopex | |- ( ( T e. LinOp /\ T e. ContOp ) -> ( normop ` T ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | |- ( T e. ( LinOp i^i ContOp ) <-> ( T e. LinOp /\ T e. ContOp ) ) |
|
| 2 | fveq2 | |- ( T = if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) -> ( normop ` T ) = ( normop ` if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ) ) |
|
| 3 | 2 | eleq1d | |- ( T = if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) -> ( ( normop ` T ) e. RR <-> ( normop ` if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ) e. RR ) ) |
| 4 | idlnop | |- ( _I |` ~H ) e. LinOp |
|
| 5 | idcnop | |- ( _I |` ~H ) e. ContOp |
|
| 6 | elin | |- ( ( _I |` ~H ) e. ( LinOp i^i ContOp ) <-> ( ( _I |` ~H ) e. LinOp /\ ( _I |` ~H ) e. ContOp ) ) |
|
| 7 | 4 5 6 | mpbir2an | |- ( _I |` ~H ) e. ( LinOp i^i ContOp ) |
| 8 | 7 | elimel | |- if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ( LinOp i^i ContOp ) |
| 9 | elin | |- ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ( LinOp i^i ContOp ) <-> ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. LinOp /\ if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ContOp ) ) |
|
| 10 | 8 9 | mpbi | |- ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. LinOp /\ if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ContOp ) |
| 11 | 10 | simpli | |- if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. LinOp |
| 12 | 10 | simpri | |- if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ContOp |
| 13 | 11 12 | nmcopexi | |- ( normop ` if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ) e. RR |
| 14 | 3 13 | dedth | |- ( T e. ( LinOp i^i ContOp ) -> ( normop ` T ) e. RR ) |
| 15 | 1 14 | sylbir | |- ( ( T e. LinOp /\ T e. ContOp ) -> ( normop ` T ) e. RR ) |