This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmbdfnlb.1 | |- ( T e. LinFn /\ ( normfn ` T ) e. RR ) |
|
| Assertion | nmbdfnlbi | |- ( A e. ~H -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmbdfnlb.1 | |- ( T e. LinFn /\ ( normfn ` T ) e. RR ) |
|
| 2 | fveq2 | |- ( A = 0h -> ( T ` A ) = ( T ` 0h ) ) |
|
| 3 | 1 | simpli | |- T e. LinFn |
| 4 | 3 | lnfn0i | |- ( T ` 0h ) = 0 |
| 5 | 2 4 | eqtrdi | |- ( A = 0h -> ( T ` A ) = 0 ) |
| 6 | 5 | abs00bd | |- ( A = 0h -> ( abs ` ( T ` A ) ) = 0 ) |
| 7 | 0le0 | |- 0 <_ 0 |
|
| 8 | fveq2 | |- ( A = 0h -> ( normh ` A ) = ( normh ` 0h ) ) |
|
| 9 | norm0 | |- ( normh ` 0h ) = 0 |
|
| 10 | 8 9 | eqtrdi | |- ( A = 0h -> ( normh ` A ) = 0 ) |
| 11 | 10 | oveq2d | |- ( A = 0h -> ( ( normfn ` T ) x. ( normh ` A ) ) = ( ( normfn ` T ) x. 0 ) ) |
| 12 | 1 | simpri | |- ( normfn ` T ) e. RR |
| 13 | 12 | recni | |- ( normfn ` T ) e. CC |
| 14 | 13 | mul01i | |- ( ( normfn ` T ) x. 0 ) = 0 |
| 15 | 11 14 | eqtr2di | |- ( A = 0h -> 0 = ( ( normfn ` T ) x. ( normh ` A ) ) ) |
| 16 | 7 15 | breqtrid | |- ( A = 0h -> 0 <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |
| 17 | 6 16 | eqbrtrd | |- ( A = 0h -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |
| 18 | 17 | adantl | |- ( ( A e. ~H /\ A = 0h ) -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |
| 19 | 3 | lnfnfi | |- T : ~H --> CC |
| 20 | 19 | ffvelcdmi | |- ( A e. ~H -> ( T ` A ) e. CC ) |
| 21 | 20 | abscld | |- ( A e. ~H -> ( abs ` ( T ` A ) ) e. RR ) |
| 22 | 21 | adantr | |- ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( T ` A ) ) e. RR ) |
| 23 | 22 | recnd | |- ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( T ` A ) ) e. CC ) |
| 24 | normcl | |- ( A e. ~H -> ( normh ` A ) e. RR ) |
|
| 25 | 24 | adantr | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) e. RR ) |
| 26 | 25 | recnd | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) e. CC ) |
| 27 | normne0 | |- ( A e. ~H -> ( ( normh ` A ) =/= 0 <-> A =/= 0h ) ) |
|
| 28 | 27 | biimpar | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) =/= 0 ) |
| 29 | 23 26 28 | divrec2d | |- ( ( A e. ~H /\ A =/= 0h ) -> ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) = ( ( 1 / ( normh ` A ) ) x. ( abs ` ( T ` A ) ) ) ) |
| 30 | 25 28 | rereccld | |- ( ( A e. ~H /\ A =/= 0h ) -> ( 1 / ( normh ` A ) ) e. RR ) |
| 31 | 30 | recnd | |- ( ( A e. ~H /\ A =/= 0h ) -> ( 1 / ( normh ` A ) ) e. CC ) |
| 32 | simpl | |- ( ( A e. ~H /\ A =/= 0h ) -> A e. ~H ) |
|
| 33 | 3 | lnfnmuli | |- ( ( ( 1 / ( normh ` A ) ) e. CC /\ A e. ~H ) -> ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( 1 / ( normh ` A ) ) x. ( T ` A ) ) ) |
| 34 | 31 32 33 | syl2anc | |- ( ( A e. ~H /\ A =/= 0h ) -> ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( 1 / ( normh ` A ) ) x. ( T ` A ) ) ) |
| 35 | 34 | fveq2d | |- ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) = ( abs ` ( ( 1 / ( normh ` A ) ) x. ( T ` A ) ) ) ) |
| 36 | 20 | adantr | |- ( ( A e. ~H /\ A =/= 0h ) -> ( T ` A ) e. CC ) |
| 37 | 31 36 | absmuld | |- ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( ( 1 / ( normh ` A ) ) x. ( T ` A ) ) ) = ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( abs ` ( T ` A ) ) ) ) |
| 38 | normgt0 | |- ( A e. ~H -> ( A =/= 0h <-> 0 < ( normh ` A ) ) ) |
|
| 39 | 38 | biimpa | |- ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( normh ` A ) ) |
| 40 | 25 39 | recgt0d | |- ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( 1 / ( normh ` A ) ) ) |
| 41 | 0re | |- 0 e. RR |
|
| 42 | ltle | |- ( ( 0 e. RR /\ ( 1 / ( normh ` A ) ) e. RR ) -> ( 0 < ( 1 / ( normh ` A ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) ) |
|
| 43 | 41 42 | mpan | |- ( ( 1 / ( normh ` A ) ) e. RR -> ( 0 < ( 1 / ( normh ` A ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) ) |
| 44 | 30 40 43 | sylc | |- ( ( A e. ~H /\ A =/= 0h ) -> 0 <_ ( 1 / ( normh ` A ) ) ) |
| 45 | 30 44 | absidd | |- ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( 1 / ( normh ` A ) ) ) = ( 1 / ( normh ` A ) ) ) |
| 46 | 45 | oveq1d | |- ( ( A e. ~H /\ A =/= 0h ) -> ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( abs ` ( T ` A ) ) ) = ( ( 1 / ( normh ` A ) ) x. ( abs ` ( T ` A ) ) ) ) |
| 47 | 35 37 46 | 3eqtrrd | |- ( ( A e. ~H /\ A =/= 0h ) -> ( ( 1 / ( normh ` A ) ) x. ( abs ` ( T ` A ) ) ) = ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) ) |
| 48 | 29 47 | eqtrd | |- ( ( A e. ~H /\ A =/= 0h ) -> ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) = ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) ) |
| 49 | hvmulcl | |- ( ( ( 1 / ( normh ` A ) ) e. CC /\ A e. ~H ) -> ( ( 1 / ( normh ` A ) ) .h A ) e. ~H ) |
|
| 50 | 31 32 49 | syl2anc | |- ( ( A e. ~H /\ A =/= 0h ) -> ( ( 1 / ( normh ` A ) ) .h A ) e. ~H ) |
| 51 | normcl | |- ( ( ( 1 / ( normh ` A ) ) .h A ) e. ~H -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR ) |
|
| 52 | 50 51 | syl | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR ) |
| 53 | norm1 | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 ) |
|
| 54 | eqle | |- ( ( ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) |
|
| 55 | 52 53 54 | syl2anc | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) |
| 56 | nmfnlb | |- ( ( T : ~H --> CC /\ ( ( 1 / ( normh ` A ) ) .h A ) e. ~H /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) -> ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normfn ` T ) ) |
|
| 57 | 19 56 | mp3an1 | |- ( ( ( ( 1 / ( normh ` A ) ) .h A ) e. ~H /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) -> ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normfn ` T ) ) |
| 58 | 50 55 57 | syl2anc | |- ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normfn ` T ) ) |
| 59 | 48 58 | eqbrtrd | |- ( ( A e. ~H /\ A =/= 0h ) -> ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normfn ` T ) ) |
| 60 | 12 | a1i | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normfn ` T ) e. RR ) |
| 61 | ledivmul2 | |- ( ( ( abs ` ( T ` A ) ) e. RR /\ ( normfn ` T ) e. RR /\ ( ( normh ` A ) e. RR /\ 0 < ( normh ` A ) ) ) -> ( ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normfn ` T ) <-> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) ) |
|
| 62 | 22 60 25 39 61 | syl112anc | |- ( ( A e. ~H /\ A =/= 0h ) -> ( ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normfn ` T ) <-> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) ) |
| 63 | 59 62 | mpbid | |- ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |
| 64 | 18 63 | pm2.61dane | |- ( A e. ~H -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |