This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmbdfnlb.1 | ⊢ ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) | |
| Assertion | nmbdfnlbi | ⊢ ( 𝐴 ∈ ℋ → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmbdfnlb.1 | ⊢ ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) | |
| 2 | fveq2 | ⊢ ( 𝐴 = 0ℎ → ( 𝑇 ‘ 𝐴 ) = ( 𝑇 ‘ 0ℎ ) ) | |
| 3 | 1 | simpli | ⊢ 𝑇 ∈ LinFn |
| 4 | 3 | lnfn0i | ⊢ ( 𝑇 ‘ 0ℎ ) = 0 |
| 5 | 2 4 | eqtrdi | ⊢ ( 𝐴 = 0ℎ → ( 𝑇 ‘ 𝐴 ) = 0 ) |
| 6 | 5 | abs00bd | ⊢ ( 𝐴 = 0ℎ → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) = 0 ) |
| 7 | 0le0 | ⊢ 0 ≤ 0 | |
| 8 | fveq2 | ⊢ ( 𝐴 = 0ℎ → ( normℎ ‘ 𝐴 ) = ( normℎ ‘ 0ℎ ) ) | |
| 9 | norm0 | ⊢ ( normℎ ‘ 0ℎ ) = 0 | |
| 10 | 8 9 | eqtrdi | ⊢ ( 𝐴 = 0ℎ → ( normℎ ‘ 𝐴 ) = 0 ) |
| 11 | 10 | oveq2d | ⊢ ( 𝐴 = 0ℎ → ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) = ( ( normfn ‘ 𝑇 ) · 0 ) ) |
| 12 | 1 | simpri | ⊢ ( normfn ‘ 𝑇 ) ∈ ℝ |
| 13 | 12 | recni | ⊢ ( normfn ‘ 𝑇 ) ∈ ℂ |
| 14 | 13 | mul01i | ⊢ ( ( normfn ‘ 𝑇 ) · 0 ) = 0 |
| 15 | 11 14 | eqtr2di | ⊢ ( 𝐴 = 0ℎ → 0 = ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 16 | 7 15 | breqtrid | ⊢ ( 𝐴 = 0ℎ → 0 ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 17 | 6 16 | eqbrtrd | ⊢ ( 𝐴 = 0ℎ → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 18 | 17 | adantl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 19 | 3 | lnfnfi | ⊢ 𝑇 : ℋ ⟶ ℂ |
| 20 | 19 | ffvelcdmi | ⊢ ( 𝐴 ∈ ℋ → ( 𝑇 ‘ 𝐴 ) ∈ ℂ ) |
| 21 | 20 | abscld | ⊢ ( 𝐴 ∈ ℋ → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ) |
| 22 | 21 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ) |
| 23 | 22 | recnd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℂ ) |
| 24 | normcl | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℝ ) | |
| 25 | 24 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
| 26 | 25 | recnd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ 𝐴 ) ∈ ℂ ) |
| 27 | normne0 | ⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0ℎ ) ) | |
| 28 | 27 | biimpar | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ 𝐴 ) ≠ 0 ) |
| 29 | 23 26 28 | divrec2d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 30 | 25 28 | rereccld | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℝ ) |
| 31 | 30 | recnd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ) |
| 32 | simpl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 𝐴 ∈ ℋ ) | |
| 33 | 3 | lnfnmuli | ⊢ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( 𝑇 ‘ 𝐴 ) ) ) |
| 34 | 31 32 33 | syl2anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( 𝑇 ‘ 𝐴 ) ) ) |
| 35 | 34 | fveq2d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( abs ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) = ( abs ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 36 | 20 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 𝑇 ‘ 𝐴 ) ∈ ℂ ) |
| 37 | 31 36 | absmuld | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( abs ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( 𝑇 ‘ 𝐴 ) ) ) = ( ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) · ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 38 | normgt0 | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0ℎ ↔ 0 < ( normℎ ‘ 𝐴 ) ) ) | |
| 39 | 38 | biimpa | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( normℎ ‘ 𝐴 ) ) |
| 40 | 25 39 | recgt0d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( 1 / ( normℎ ‘ 𝐴 ) ) ) |
| 41 | 0re | ⊢ 0 ∈ ℝ | |
| 42 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℝ ) → ( 0 < ( 1 / ( normℎ ‘ 𝐴 ) ) → 0 ≤ ( 1 / ( normℎ ‘ 𝐴 ) ) ) ) | |
| 43 | 41 42 | mpan | ⊢ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℝ → ( 0 < ( 1 / ( normℎ ‘ 𝐴 ) ) → 0 ≤ ( 1 / ( normℎ ‘ 𝐴 ) ) ) ) |
| 44 | 30 40 43 | sylc | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 ≤ ( 1 / ( normℎ ‘ 𝐴 ) ) ) |
| 45 | 30 44 | absidd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) = ( 1 / ( normℎ ‘ 𝐴 ) ) ) |
| 46 | 45 | oveq1d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) · ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 47 | 35 37 46 | 3eqtrrd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) = ( abs ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ) |
| 48 | 29 47 | eqtrd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) = ( abs ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ) |
| 49 | hvmulcl | ⊢ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ) | |
| 50 | 31 32 49 | syl2anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ) |
| 51 | normcl | ⊢ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ∈ ℝ ) | |
| 52 | 50 51 | syl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ∈ ℝ ) |
| 53 | norm1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = 1 ) | |
| 54 | eqle | ⊢ ( ( ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ∈ ℝ ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = 1 ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) | |
| 55 | 52 53 54 | syl2anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) |
| 56 | nmfnlb | ⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) → ( abs ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ≤ ( normfn ‘ 𝑇 ) ) | |
| 57 | 19 56 | mp3an1 | ⊢ ( ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) → ( abs ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ≤ ( normfn ‘ 𝑇 ) ) |
| 58 | 50 55 57 | syl2anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( abs ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ≤ ( normfn ‘ 𝑇 ) ) |
| 59 | 48 58 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) ≤ ( normfn ‘ 𝑇 ) ) |
| 60 | 12 | a1i | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normfn ‘ 𝑇 ) ∈ ℝ ) |
| 61 | ledivmul2 | ⊢ ( ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ∧ ( ( normℎ ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( normℎ ‘ 𝐴 ) ) ) → ( ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) ≤ ( normfn ‘ 𝑇 ) ↔ ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ) | |
| 62 | 22 60 25 39 61 | syl112anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) ≤ ( normfn ‘ 𝑇 ) ↔ ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ) |
| 63 | 59 62 | mpbid | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 64 | 18 63 | pm2.61dane | ⊢ ( 𝐴 ∈ ℋ → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |