This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmbdfnlb | |- ( ( T e. LinFn /\ ( normfn ` T ) e. RR /\ A e. ~H ) -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 | |- ( T = if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) -> ( T ` A ) = ( if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ` A ) ) |
|
| 2 | 1 | fveq2d | |- ( T = if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) -> ( abs ` ( T ` A ) ) = ( abs ` ( if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ` A ) ) ) |
| 3 | fveq2 | |- ( T = if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) -> ( normfn ` T ) = ( normfn ` if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ) ) |
|
| 4 | 3 | oveq1d | |- ( T = if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) -> ( ( normfn ` T ) x. ( normh ` A ) ) = ( ( normfn ` if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ) x. ( normh ` A ) ) ) |
| 5 | 2 4 | breq12d | |- ( T = if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) -> ( ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) <-> ( abs ` ( if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ` A ) ) <_ ( ( normfn ` if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ) x. ( normh ` A ) ) ) ) |
| 6 | 5 | imbi2d | |- ( T = if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) -> ( ( A e. ~H -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) <-> ( A e. ~H -> ( abs ` ( if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ` A ) ) <_ ( ( normfn ` if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ) x. ( normh ` A ) ) ) ) ) |
| 7 | eleq1 | |- ( T = if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) -> ( T e. LinFn <-> if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) e. LinFn ) ) |
|
| 8 | 3 | eleq1d | |- ( T = if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) -> ( ( normfn ` T ) e. RR <-> ( normfn ` if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ) e. RR ) ) |
| 9 | 7 8 | anbi12d | |- ( T = if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) -> ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) <-> ( if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) e. LinFn /\ ( normfn ` if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ) e. RR ) ) ) |
| 10 | eleq1 | |- ( ( ~H X. { 0 } ) = if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) -> ( ( ~H X. { 0 } ) e. LinFn <-> if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) e. LinFn ) ) |
|
| 11 | fveq2 | |- ( ( ~H X. { 0 } ) = if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) -> ( normfn ` ( ~H X. { 0 } ) ) = ( normfn ` if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ) ) |
|
| 12 | 11 | eleq1d | |- ( ( ~H X. { 0 } ) = if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) -> ( ( normfn ` ( ~H X. { 0 } ) ) e. RR <-> ( normfn ` if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ) e. RR ) ) |
| 13 | 10 12 | anbi12d | |- ( ( ~H X. { 0 } ) = if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) -> ( ( ( ~H X. { 0 } ) e. LinFn /\ ( normfn ` ( ~H X. { 0 } ) ) e. RR ) <-> ( if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) e. LinFn /\ ( normfn ` if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ) e. RR ) ) ) |
| 14 | 0lnfn | |- ( ~H X. { 0 } ) e. LinFn |
|
| 15 | nmfn0 | |- ( normfn ` ( ~H X. { 0 } ) ) = 0 |
|
| 16 | 0re | |- 0 e. RR |
|
| 17 | 15 16 | eqeltri | |- ( normfn ` ( ~H X. { 0 } ) ) e. RR |
| 18 | 14 17 | pm3.2i | |- ( ( ~H X. { 0 } ) e. LinFn /\ ( normfn ` ( ~H X. { 0 } ) ) e. RR ) |
| 19 | 9 13 18 | elimhyp | |- ( if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) e. LinFn /\ ( normfn ` if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ) e. RR ) |
| 20 | 19 | nmbdfnlbi | |- ( A e. ~H -> ( abs ` ( if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ` A ) ) <_ ( ( normfn ` if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ) x. ( normh ` A ) ) ) |
| 21 | 6 20 | dedth | |- ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) -> ( A e. ~H -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) ) |
| 22 | 21 | 3impia | |- ( ( T e. LinFn /\ ( normfn ` T ) e. RR /\ A e. ~H ) -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |