This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of Gleason p. 243. (Contributed by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulcn2 | |- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> E. y e. RR+ E. z e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rphalfcl | |- ( A e. RR+ -> ( A / 2 ) e. RR+ ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( A / 2 ) e. RR+ ) |
| 3 | abscl | |- ( C e. CC -> ( abs ` C ) e. RR ) |
|
| 4 | 3 | 3ad2ant3 | |- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( abs ` C ) e. RR ) |
| 5 | abscl | |- ( B e. CC -> ( abs ` B ) e. RR ) |
|
| 6 | 5 | 3ad2ant2 | |- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( abs ` B ) e. RR ) |
| 7 | 1re | |- 1 e. RR |
|
| 8 | readdcl | |- ( ( ( abs ` B ) e. RR /\ 1 e. RR ) -> ( ( abs ` B ) + 1 ) e. RR ) |
|
| 9 | 6 7 8 | sylancl | |- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( ( abs ` B ) + 1 ) e. RR ) |
| 10 | absge0 | |- ( B e. CC -> 0 <_ ( abs ` B ) ) |
|
| 11 | 0lt1 | |- 0 < 1 |
|
| 12 | addgegt0 | |- ( ( ( ( abs ` B ) e. RR /\ 1 e. RR ) /\ ( 0 <_ ( abs ` B ) /\ 0 < 1 ) ) -> 0 < ( ( abs ` B ) + 1 ) ) |
|
| 13 | 12 | an4s | |- ( ( ( ( abs ` B ) e. RR /\ 0 <_ ( abs ` B ) ) /\ ( 1 e. RR /\ 0 < 1 ) ) -> 0 < ( ( abs ` B ) + 1 ) ) |
| 14 | 7 11 13 | mpanr12 | |- ( ( ( abs ` B ) e. RR /\ 0 <_ ( abs ` B ) ) -> 0 < ( ( abs ` B ) + 1 ) ) |
| 15 | 5 10 14 | syl2anc | |- ( B e. CC -> 0 < ( ( abs ` B ) + 1 ) ) |
| 16 | 15 | 3ad2ant2 | |- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> 0 < ( ( abs ` B ) + 1 ) ) |
| 17 | 9 16 | elrpd | |- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( ( abs ` B ) + 1 ) e. RR+ ) |
| 18 | 2 17 | rpdivcld | |- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) e. RR+ ) |
| 19 | 18 | rpred | |- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) e. RR ) |
| 20 | 4 19 | readdcld | |- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) e. RR ) |
| 21 | absge0 | |- ( C e. CC -> 0 <_ ( abs ` C ) ) |
|
| 22 | 21 | 3ad2ant3 | |- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> 0 <_ ( abs ` C ) ) |
| 23 | elrp | |- ( ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) e. RR+ <-> ( ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) e. RR /\ 0 < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) |
|
| 24 | addgegt0 | |- ( ( ( ( abs ` C ) e. RR /\ ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) e. RR ) /\ ( 0 <_ ( abs ` C ) /\ 0 < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) -> 0 < ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) |
|
| 25 | 24 | an4s | |- ( ( ( ( abs ` C ) e. RR /\ 0 <_ ( abs ` C ) ) /\ ( ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) e. RR /\ 0 < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) -> 0 < ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) |
| 26 | 23 25 | sylan2b | |- ( ( ( ( abs ` C ) e. RR /\ 0 <_ ( abs ` C ) ) /\ ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) e. RR+ ) -> 0 < ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) |
| 27 | 4 22 18 26 | syl21anc | |- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> 0 < ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) |
| 28 | 20 27 | elrpd | |- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) e. RR+ ) |
| 29 | 2 28 | rpdivcld | |- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) e. RR+ ) |
| 30 | simprl | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> u e. CC ) |
|
| 31 | simpl2 | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> B e. CC ) |
|
| 32 | 30 31 | subcld | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( u - B ) e. CC ) |
| 33 | 32 | abscld | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` ( u - B ) ) e. RR ) |
| 34 | 2 | adantr | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( A / 2 ) e. RR+ ) |
| 35 | 34 | rpred | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( A / 2 ) e. RR ) |
| 36 | 28 | adantr | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) e. RR+ ) |
| 37 | 33 35 36 | ltmuldivd | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) < ( A / 2 ) <-> ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) ) ) |
| 38 | simprr | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> v e. CC ) |
|
| 39 | simpl3 | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> C e. CC ) |
|
| 40 | 38 39 | abs2difd | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` v ) - ( abs ` C ) ) <_ ( abs ` ( v - C ) ) ) |
| 41 | 38 | abscld | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` v ) e. RR ) |
| 42 | 4 | adantr | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` C ) e. RR ) |
| 43 | 41 42 | resubcld | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` v ) - ( abs ` C ) ) e. RR ) |
| 44 | 38 39 | subcld | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( v - C ) e. CC ) |
| 45 | 44 | abscld | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` ( v - C ) ) e. RR ) |
| 46 | 19 | adantr | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) e. RR ) |
| 47 | lelttr | |- ( ( ( ( abs ` v ) - ( abs ` C ) ) e. RR /\ ( abs ` ( v - C ) ) e. RR /\ ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) e. RR ) -> ( ( ( ( abs ` v ) - ( abs ` C ) ) <_ ( abs ` ( v - C ) ) /\ ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( ( abs ` v ) - ( abs ` C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) |
|
| 48 | 43 45 46 47 | syl3anc | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( ( abs ` v ) - ( abs ` C ) ) <_ ( abs ` ( v - C ) ) /\ ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( ( abs ` v ) - ( abs ` C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) |
| 49 | 40 48 | mpand | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) -> ( ( abs ` v ) - ( abs ` C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) |
| 50 | 41 42 46 | ltsubadd2d | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` v ) - ( abs ` C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) <-> ( abs ` v ) < ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) ) |
| 51 | 49 50 | sylibd | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) -> ( abs ` v ) < ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) ) |
| 52 | 20 | adantr | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) e. RR ) |
| 53 | ltle | |- ( ( ( abs ` v ) e. RR /\ ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) e. RR ) -> ( ( abs ` v ) < ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( abs ` v ) <_ ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) ) |
|
| 54 | 41 52 53 | syl2anc | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` v ) < ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( abs ` v ) <_ ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) ) |
| 55 | 51 54 | syld | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) -> ( abs ` v ) <_ ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) ) |
| 56 | 32 | absge0d | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> 0 <_ ( abs ` ( u - B ) ) ) |
| 57 | lemul2a | |- ( ( ( ( abs ` v ) e. RR /\ ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) e. RR /\ ( ( abs ` ( u - B ) ) e. RR /\ 0 <_ ( abs ` ( u - B ) ) ) ) /\ ( abs ` v ) <_ ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) -> ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) <_ ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) ) |
|
| 58 | 57 | ex | |- ( ( ( abs ` v ) e. RR /\ ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) e. RR /\ ( ( abs ` ( u - B ) ) e. RR /\ 0 <_ ( abs ` ( u - B ) ) ) ) -> ( ( abs ` v ) <_ ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) <_ ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) ) ) |
| 59 | 41 52 33 56 58 | syl112anc | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` v ) <_ ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) <_ ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) ) ) |
| 60 | 33 41 | remulcld | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) e. RR ) |
| 61 | 33 52 | remulcld | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) e. RR ) |
| 62 | lelttr | |- ( ( ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) e. RR /\ ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) e. RR /\ ( A / 2 ) e. RR ) -> ( ( ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) <_ ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) < ( A / 2 ) ) -> ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) < ( A / 2 ) ) ) |
|
| 63 | 60 61 35 62 | syl3anc | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) <_ ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) < ( A / 2 ) ) -> ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) < ( A / 2 ) ) ) |
| 64 | 63 | expd | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) <_ ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) -> ( ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) < ( A / 2 ) -> ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) < ( A / 2 ) ) ) ) |
| 65 | 55 59 64 | 3syld | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) -> ( ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) < ( A / 2 ) -> ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) < ( A / 2 ) ) ) ) |
| 66 | 65 | com23 | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( u - B ) ) x. ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) < ( A / 2 ) -> ( ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) -> ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) < ( A / 2 ) ) ) ) |
| 67 | 37 66 | sylbird | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) -> ( ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) -> ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) < ( A / 2 ) ) ) ) |
| 68 | 67 | impd | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) < ( A / 2 ) ) ) |
| 69 | 32 38 | absmuld | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` ( ( u - B ) x. v ) ) = ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) ) |
| 70 | 30 31 38 | subdird | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( u - B ) x. v ) = ( ( u x. v ) - ( B x. v ) ) ) |
| 71 | 70 | fveq2d | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` ( ( u - B ) x. v ) ) = ( abs ` ( ( u x. v ) - ( B x. v ) ) ) ) |
| 72 | 69 71 | eqtr3d | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) = ( abs ` ( ( u x. v ) - ( B x. v ) ) ) ) |
| 73 | 72 | breq1d | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( u - B ) ) x. ( abs ` v ) ) < ( A / 2 ) <-> ( abs ` ( ( u x. v ) - ( B x. v ) ) ) < ( A / 2 ) ) ) |
| 74 | 68 73 | sylibd | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( abs ` ( ( u x. v ) - ( B x. v ) ) ) < ( A / 2 ) ) ) |
| 75 | 17 | adantr | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` B ) + 1 ) e. RR+ ) |
| 76 | 45 35 75 | ltmuldiv2d | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) < ( A / 2 ) <-> ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) |
| 77 | 31 38 39 | subdid | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( B x. ( v - C ) ) = ( ( B x. v ) - ( B x. C ) ) ) |
| 78 | 77 | fveq2d | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` ( B x. ( v - C ) ) ) = ( abs ` ( ( B x. v ) - ( B x. C ) ) ) ) |
| 79 | 31 44 | absmuld | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` ( B x. ( v - C ) ) ) = ( ( abs ` B ) x. ( abs ` ( v - C ) ) ) ) |
| 80 | 78 79 | eqtr3d | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` ( ( B x. v ) - ( B x. C ) ) ) = ( ( abs ` B ) x. ( abs ` ( v - C ) ) ) ) |
| 81 | 31 | abscld | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` B ) e. RR ) |
| 82 | 81 | lep1d | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` B ) <_ ( ( abs ` B ) + 1 ) ) |
| 83 | 9 | adantr | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` B ) + 1 ) e. RR ) |
| 84 | abscl | |- ( ( v - C ) e. CC -> ( abs ` ( v - C ) ) e. RR ) |
|
| 85 | absge0 | |- ( ( v - C ) e. CC -> 0 <_ ( abs ` ( v - C ) ) ) |
|
| 86 | 84 85 | jca | |- ( ( v - C ) e. CC -> ( ( abs ` ( v - C ) ) e. RR /\ 0 <_ ( abs ` ( v - C ) ) ) ) |
| 87 | lemul1a | |- ( ( ( ( abs ` B ) e. RR /\ ( ( abs ` B ) + 1 ) e. RR /\ ( ( abs ` ( v - C ) ) e. RR /\ 0 <_ ( abs ` ( v - C ) ) ) ) /\ ( abs ` B ) <_ ( ( abs ` B ) + 1 ) ) -> ( ( abs ` B ) x. ( abs ` ( v - C ) ) ) <_ ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) ) |
|
| 88 | 87 | ex | |- ( ( ( abs ` B ) e. RR /\ ( ( abs ` B ) + 1 ) e. RR /\ ( ( abs ` ( v - C ) ) e. RR /\ 0 <_ ( abs ` ( v - C ) ) ) ) -> ( ( abs ` B ) <_ ( ( abs ` B ) + 1 ) -> ( ( abs ` B ) x. ( abs ` ( v - C ) ) ) <_ ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) ) ) |
| 89 | 86 88 | syl3an3 | |- ( ( ( abs ` B ) e. RR /\ ( ( abs ` B ) + 1 ) e. RR /\ ( v - C ) e. CC ) -> ( ( abs ` B ) <_ ( ( abs ` B ) + 1 ) -> ( ( abs ` B ) x. ( abs ` ( v - C ) ) ) <_ ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) ) ) |
| 90 | 81 83 44 89 | syl3anc | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` B ) <_ ( ( abs ` B ) + 1 ) -> ( ( abs ` B ) x. ( abs ` ( v - C ) ) ) <_ ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) ) ) |
| 91 | 82 90 | mpd | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` B ) x. ( abs ` ( v - C ) ) ) <_ ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) ) |
| 92 | 80 91 | eqbrtrd | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` ( ( B x. v ) - ( B x. C ) ) ) <_ ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) ) |
| 93 | 31 38 | mulcld | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( B x. v ) e. CC ) |
| 94 | 31 39 | mulcld | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( B x. C ) e. CC ) |
| 95 | 93 94 | subcld | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( B x. v ) - ( B x. C ) ) e. CC ) |
| 96 | 95 | abscld | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` ( ( B x. v ) - ( B x. C ) ) ) e. RR ) |
| 97 | 83 45 | remulcld | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) e. RR ) |
| 98 | lelttr | |- ( ( ( abs ` ( ( B x. v ) - ( B x. C ) ) ) e. RR /\ ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) e. RR /\ ( A / 2 ) e. RR ) -> ( ( ( abs ` ( ( B x. v ) - ( B x. C ) ) ) <_ ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) /\ ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) < ( A / 2 ) ) -> ( abs ` ( ( B x. v ) - ( B x. C ) ) ) < ( A / 2 ) ) ) |
|
| 99 | 96 97 35 98 | syl3anc | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( ( B x. v ) - ( B x. C ) ) ) <_ ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) /\ ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) < ( A / 2 ) ) -> ( abs ` ( ( B x. v ) - ( B x. C ) ) ) < ( A / 2 ) ) ) |
| 100 | 92 99 | mpand | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( ( abs ` B ) + 1 ) x. ( abs ` ( v - C ) ) ) < ( A / 2 ) -> ( abs ` ( ( B x. v ) - ( B x. C ) ) ) < ( A / 2 ) ) ) |
| 101 | 76 100 | sylbird | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) -> ( abs ` ( ( B x. v ) - ( B x. C ) ) ) < ( A / 2 ) ) ) |
| 102 | 101 | adantld | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( abs ` ( ( B x. v ) - ( B x. C ) ) ) < ( A / 2 ) ) ) |
| 103 | 74 102 | jcad | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( ( abs ` ( ( u x. v ) - ( B x. v ) ) ) < ( A / 2 ) /\ ( abs ` ( ( B x. v ) - ( B x. C ) ) ) < ( A / 2 ) ) ) ) |
| 104 | mulcl | |- ( ( u e. CC /\ v e. CC ) -> ( u x. v ) e. CC ) |
|
| 105 | 104 | adantl | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( u x. v ) e. CC ) |
| 106 | simpl1 | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> A e. RR+ ) |
|
| 107 | 106 | rpred | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> A e. RR ) |
| 108 | abs3lem | |- ( ( ( ( u x. v ) e. CC /\ ( B x. C ) e. CC ) /\ ( ( B x. v ) e. CC /\ A e. RR ) ) -> ( ( ( abs ` ( ( u x. v ) - ( B x. v ) ) ) < ( A / 2 ) /\ ( abs ` ( ( B x. v ) - ( B x. C ) ) ) < ( A / 2 ) ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) ) |
|
| 109 | 105 94 93 107 108 | syl22anc | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( ( u x. v ) - ( B x. v ) ) ) < ( A / 2 ) /\ ( abs ` ( ( B x. v ) - ( B x. C ) ) ) < ( A / 2 ) ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) ) |
| 110 | 103 109 | syld | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) ) |
| 111 | 110 | ralrimivva | |- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) ) |
| 112 | breq2 | |- ( y = ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) -> ( ( abs ` ( u - B ) ) < y <-> ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) ) ) |
|
| 113 | 112 | anbi1d | |- ( y = ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) -> ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) <-> ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < z ) ) ) |
| 114 | 113 | imbi1d | |- ( y = ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) -> ( ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) <-> ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) ) ) |
| 115 | 114 | 2ralbidv | |- ( y = ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) -> ( A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) <-> A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) ) ) |
| 116 | breq2 | |- ( z = ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) -> ( ( abs ` ( v - C ) ) < z <-> ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) |
|
| 117 | 116 | anbi2d | |- ( z = ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) -> ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < z ) <-> ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) ) |
| 118 | 117 | imbi1d | |- ( z = ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) -> ( ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) <-> ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) ) ) |
| 119 | 118 | 2ralbidv | |- ( z = ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) -> ( A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) <-> A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) ) ) |
| 120 | 115 119 | rspc2ev | |- ( ( ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) e. RR+ /\ ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) e. RR+ /\ A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < ( ( A / 2 ) / ( ( abs ` C ) + ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) ) /\ ( abs ` ( v - C ) ) < ( ( A / 2 ) / ( ( abs ` B ) + 1 ) ) ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) ) -> E. y e. RR+ E. z e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) ) |
| 121 | 29 18 111 120 | syl3anc | |- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> E. y e. RR+ E. z e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u x. v ) - ( B x. C ) ) ) < A ) ) |