This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normed module is a left module. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nlmlmod | |- ( W e. NrmMod -> W e. LMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 2 | eqid | |- ( norm ` W ) = ( norm ` W ) |
|
| 3 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 4 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 5 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 6 | eqid | |- ( norm ` ( Scalar ` W ) ) = ( norm ` ( Scalar ` W ) ) |
|
| 7 | 1 2 3 4 5 6 | isnlm | |- ( W e. NrmMod <-> ( ( W e. NrmGrp /\ W e. LMod /\ ( Scalar ` W ) e. NrmRing ) /\ A. x e. ( Base ` ( Scalar ` W ) ) A. y e. ( Base ` W ) ( ( norm ` W ) ` ( x ( .s ` W ) y ) ) = ( ( ( norm ` ( Scalar ` W ) ) ` x ) x. ( ( norm ` W ) ` y ) ) ) ) |
| 8 | 7 | simplbi | |- ( W e. NrmMod -> ( W e. NrmGrp /\ W e. LMod /\ ( Scalar ` W ) e. NrmRing ) ) |
| 9 | 8 | simp2d | |- ( W e. NrmMod -> W e. LMod ) |