This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an uniform space, a neighboring filter is a Cauchy filter base. (Contributed by Thierry Arnoux, 24-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | neipcfilu.x | |- X = ( Base ` W ) |
|
| neipcfilu.j | |- J = ( TopOpen ` W ) |
||
| neipcfilu.u | |- U = ( UnifSt ` W ) |
||
| Assertion | neipcfilu | |- ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) -> ( ( nei ` J ) ` { P } ) e. ( CauFilU ` U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neipcfilu.x | |- X = ( Base ` W ) |
|
| 2 | neipcfilu.j | |- J = ( TopOpen ` W ) |
|
| 3 | neipcfilu.u | |- U = ( UnifSt ` W ) |
|
| 4 | simp2 | |- ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) -> W e. TopSp ) |
|
| 5 | 1 2 | istps | |- ( W e. TopSp <-> J e. ( TopOn ` X ) ) |
| 6 | 4 5 | sylib | |- ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) -> J e. ( TopOn ` X ) ) |
| 7 | simp3 | |- ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) -> P e. X ) |
|
| 8 | 7 | snssd | |- ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) -> { P } C_ X ) |
| 9 | 7 | snn0d | |- ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) -> { P } =/= (/) ) |
| 10 | neifil | |- ( ( J e. ( TopOn ` X ) /\ { P } C_ X /\ { P } =/= (/) ) -> ( ( nei ` J ) ` { P } ) e. ( Fil ` X ) ) |
|
| 11 | 6 8 9 10 | syl3anc | |- ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) -> ( ( nei ` J ) ` { P } ) e. ( Fil ` X ) ) |
| 12 | filfbas | |- ( ( ( nei ` J ) ` { P } ) e. ( Fil ` X ) -> ( ( nei ` J ) ` { P } ) e. ( fBas ` X ) ) |
|
| 13 | 11 12 | syl | |- ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) -> ( ( nei ` J ) ` { P } ) e. ( fBas ` X ) ) |
| 14 | eqid | |- ( w " { P } ) = ( w " { P } ) |
|
| 15 | imaeq1 | |- ( v = w -> ( v " { P } ) = ( w " { P } ) ) |
|
| 16 | 15 | rspceeqv | |- ( ( w e. U /\ ( w " { P } ) = ( w " { P } ) ) -> E. v e. U ( w " { P } ) = ( v " { P } ) ) |
| 17 | 14 16 | mpan2 | |- ( w e. U -> E. v e. U ( w " { P } ) = ( v " { P } ) ) |
| 18 | vex | |- w e. _V |
|
| 19 | 18 | imaex | |- ( w " { P } ) e. _V |
| 20 | eqid | |- ( v e. U |-> ( v " { P } ) ) = ( v e. U |-> ( v " { P } ) ) |
|
| 21 | 20 | elrnmpt | |- ( ( w " { P } ) e. _V -> ( ( w " { P } ) e. ran ( v e. U |-> ( v " { P } ) ) <-> E. v e. U ( w " { P } ) = ( v " { P } ) ) ) |
| 22 | 19 21 | ax-mp | |- ( ( w " { P } ) e. ran ( v e. U |-> ( v " { P } ) ) <-> E. v e. U ( w " { P } ) = ( v " { P } ) ) |
| 23 | 17 22 | sylibr | |- ( w e. U -> ( w " { P } ) e. ran ( v e. U |-> ( v " { P } ) ) ) |
| 24 | 23 | ad2antlr | |- ( ( ( ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) /\ v e. U ) /\ w e. U ) /\ ( ( w " { P } ) X. ( w " { P } ) ) C_ v ) -> ( w " { P } ) e. ran ( v e. U |-> ( v " { P } ) ) ) |
| 25 | 1 3 2 | isusp | |- ( W e. UnifSp <-> ( U e. ( UnifOn ` X ) /\ J = ( unifTop ` U ) ) ) |
| 26 | 25 | simplbi | |- ( W e. UnifSp -> U e. ( UnifOn ` X ) ) |
| 27 | 26 | 3ad2ant1 | |- ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) -> U e. ( UnifOn ` X ) ) |
| 28 | eqid | |- ( unifTop ` U ) = ( unifTop ` U ) |
|
| 29 | 28 | utopsnneip | |- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> ( ( nei ` ( unifTop ` U ) ) ` { P } ) = ran ( v e. U |-> ( v " { P } ) ) ) |
| 30 | 27 7 29 | syl2anc | |- ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) -> ( ( nei ` ( unifTop ` U ) ) ` { P } ) = ran ( v e. U |-> ( v " { P } ) ) ) |
| 31 | 30 | eleq2d | |- ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) -> ( ( w " { P } ) e. ( ( nei ` ( unifTop ` U ) ) ` { P } ) <-> ( w " { P } ) e. ran ( v e. U |-> ( v " { P } ) ) ) ) |
| 32 | 31 | ad3antrrr | |- ( ( ( ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) /\ v e. U ) /\ w e. U ) /\ ( ( w " { P } ) X. ( w " { P } ) ) C_ v ) -> ( ( w " { P } ) e. ( ( nei ` ( unifTop ` U ) ) ` { P } ) <-> ( w " { P } ) e. ran ( v e. U |-> ( v " { P } ) ) ) ) |
| 33 | 24 32 | mpbird | |- ( ( ( ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) /\ v e. U ) /\ w e. U ) /\ ( ( w " { P } ) X. ( w " { P } ) ) C_ v ) -> ( w " { P } ) e. ( ( nei ` ( unifTop ` U ) ) ` { P } ) ) |
| 34 | simpl1 | |- ( ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) /\ ( v e. U /\ w e. U /\ ( ( w " { P } ) X. ( w " { P } ) ) C_ v ) ) -> W e. UnifSp ) |
|
| 35 | 34 | 3anassrs | |- ( ( ( ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) /\ v e. U ) /\ w e. U ) /\ ( ( w " { P } ) X. ( w " { P } ) ) C_ v ) -> W e. UnifSp ) |
| 36 | 25 | simprbi | |- ( W e. UnifSp -> J = ( unifTop ` U ) ) |
| 37 | 35 36 | syl | |- ( ( ( ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) /\ v e. U ) /\ w e. U ) /\ ( ( w " { P } ) X. ( w " { P } ) ) C_ v ) -> J = ( unifTop ` U ) ) |
| 38 | 37 | fveq2d | |- ( ( ( ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) /\ v e. U ) /\ w e. U ) /\ ( ( w " { P } ) X. ( w " { P } ) ) C_ v ) -> ( nei ` J ) = ( nei ` ( unifTop ` U ) ) ) |
| 39 | 38 | fveq1d | |- ( ( ( ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) /\ v e. U ) /\ w e. U ) /\ ( ( w " { P } ) X. ( w " { P } ) ) C_ v ) -> ( ( nei ` J ) ` { P } ) = ( ( nei ` ( unifTop ` U ) ) ` { P } ) ) |
| 40 | 33 39 | eleqtrrd | |- ( ( ( ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) /\ v e. U ) /\ w e. U ) /\ ( ( w " { P } ) X. ( w " { P } ) ) C_ v ) -> ( w " { P } ) e. ( ( nei ` J ) ` { P } ) ) |
| 41 | simpr | |- ( ( ( ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) /\ v e. U ) /\ w e. U ) /\ ( ( w " { P } ) X. ( w " { P } ) ) C_ v ) -> ( ( w " { P } ) X. ( w " { P } ) ) C_ v ) |
|
| 42 | id | |- ( a = ( w " { P } ) -> a = ( w " { P } ) ) |
|
| 43 | 42 | sqxpeqd | |- ( a = ( w " { P } ) -> ( a X. a ) = ( ( w " { P } ) X. ( w " { P } ) ) ) |
| 44 | 43 | sseq1d | |- ( a = ( w " { P } ) -> ( ( a X. a ) C_ v <-> ( ( w " { P } ) X. ( w " { P } ) ) C_ v ) ) |
| 45 | 44 | rspcev | |- ( ( ( w " { P } ) e. ( ( nei ` J ) ` { P } ) /\ ( ( w " { P } ) X. ( w " { P } ) ) C_ v ) -> E. a e. ( ( nei ` J ) ` { P } ) ( a X. a ) C_ v ) |
| 46 | 40 41 45 | syl2anc | |- ( ( ( ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) /\ v e. U ) /\ w e. U ) /\ ( ( w " { P } ) X. ( w " { P } ) ) C_ v ) -> E. a e. ( ( nei ` J ) ` { P } ) ( a X. a ) C_ v ) |
| 47 | 27 | adantr | |- ( ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) /\ v e. U ) -> U e. ( UnifOn ` X ) ) |
| 48 | 7 | adantr | |- ( ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) /\ v e. U ) -> P e. X ) |
| 49 | simpr | |- ( ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) /\ v e. U ) -> v e. U ) |
|
| 50 | simpll1 | |- ( ( ( ( U e. ( UnifOn ` X ) /\ P e. X /\ v e. U ) /\ u e. U ) /\ ( u o. u ) C_ v ) -> U e. ( UnifOn ` X ) ) |
|
| 51 | simplr | |- ( ( ( ( U e. ( UnifOn ` X ) /\ P e. X /\ v e. U ) /\ u e. U ) /\ ( u o. u ) C_ v ) -> u e. U ) |
|
| 52 | ustexsym | |- ( ( U e. ( UnifOn ` X ) /\ u e. U ) -> E. w e. U ( `' w = w /\ w C_ u ) ) |
|
| 53 | 50 51 52 | syl2anc | |- ( ( ( ( U e. ( UnifOn ` X ) /\ P e. X /\ v e. U ) /\ u e. U ) /\ ( u o. u ) C_ v ) -> E. w e. U ( `' w = w /\ w C_ u ) ) |
| 54 | 50 | ad2antrr | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ P e. X /\ v e. U ) /\ u e. U ) /\ ( u o. u ) C_ v ) /\ w e. U ) /\ ( `' w = w /\ w C_ u ) ) -> U e. ( UnifOn ` X ) ) |
| 55 | simplr | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ P e. X /\ v e. U ) /\ u e. U ) /\ ( u o. u ) C_ v ) /\ w e. U ) /\ ( `' w = w /\ w C_ u ) ) -> w e. U ) |
|
| 56 | ustssxp | |- ( ( U e. ( UnifOn ` X ) /\ w e. U ) -> w C_ ( X X. X ) ) |
|
| 57 | 54 55 56 | syl2anc | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ P e. X /\ v e. U ) /\ u e. U ) /\ ( u o. u ) C_ v ) /\ w e. U ) /\ ( `' w = w /\ w C_ u ) ) -> w C_ ( X X. X ) ) |
| 58 | simpll2 | |- ( ( ( ( U e. ( UnifOn ` X ) /\ P e. X /\ v e. U ) /\ u e. U ) /\ ( ( u o. u ) C_ v /\ w e. U /\ ( `' w = w /\ w C_ u ) ) ) -> P e. X ) |
|
| 59 | 58 | 3anassrs | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ P e. X /\ v e. U ) /\ u e. U ) /\ ( u o. u ) C_ v ) /\ w e. U ) /\ ( `' w = w /\ w C_ u ) ) -> P e. X ) |
| 60 | ustneism | |- ( ( w C_ ( X X. X ) /\ P e. X ) -> ( ( w " { P } ) X. ( w " { P } ) ) C_ ( w o. `' w ) ) |
|
| 61 | 57 59 60 | syl2anc | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ P e. X /\ v e. U ) /\ u e. U ) /\ ( u o. u ) C_ v ) /\ w e. U ) /\ ( `' w = w /\ w C_ u ) ) -> ( ( w " { P } ) X. ( w " { P } ) ) C_ ( w o. `' w ) ) |
| 62 | simprl | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ P e. X /\ v e. U ) /\ u e. U ) /\ ( u o. u ) C_ v ) /\ w e. U ) /\ ( `' w = w /\ w C_ u ) ) -> `' w = w ) |
|
| 63 | 62 | coeq2d | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ P e. X /\ v e. U ) /\ u e. U ) /\ ( u o. u ) C_ v ) /\ w e. U ) /\ ( `' w = w /\ w C_ u ) ) -> ( w o. `' w ) = ( w o. w ) ) |
| 64 | coss1 | |- ( w C_ u -> ( w o. w ) C_ ( u o. w ) ) |
|
| 65 | coss2 | |- ( w C_ u -> ( u o. w ) C_ ( u o. u ) ) |
|
| 66 | 64 65 | sstrd | |- ( w C_ u -> ( w o. w ) C_ ( u o. u ) ) |
| 67 | 66 | ad2antll | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ P e. X /\ v e. U ) /\ u e. U ) /\ ( u o. u ) C_ v ) /\ w e. U ) /\ ( `' w = w /\ w C_ u ) ) -> ( w o. w ) C_ ( u o. u ) ) |
| 68 | simpllr | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ P e. X /\ v e. U ) /\ u e. U ) /\ ( u o. u ) C_ v ) /\ w e. U ) /\ ( `' w = w /\ w C_ u ) ) -> ( u o. u ) C_ v ) |
|
| 69 | 67 68 | sstrd | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ P e. X /\ v e. U ) /\ u e. U ) /\ ( u o. u ) C_ v ) /\ w e. U ) /\ ( `' w = w /\ w C_ u ) ) -> ( w o. w ) C_ v ) |
| 70 | 63 69 | eqsstrd | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ P e. X /\ v e. U ) /\ u e. U ) /\ ( u o. u ) C_ v ) /\ w e. U ) /\ ( `' w = w /\ w C_ u ) ) -> ( w o. `' w ) C_ v ) |
| 71 | 61 70 | sstrd | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ P e. X /\ v e. U ) /\ u e. U ) /\ ( u o. u ) C_ v ) /\ w e. U ) /\ ( `' w = w /\ w C_ u ) ) -> ( ( w " { P } ) X. ( w " { P } ) ) C_ v ) |
| 72 | 71 | ex | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ P e. X /\ v e. U ) /\ u e. U ) /\ ( u o. u ) C_ v ) /\ w e. U ) -> ( ( `' w = w /\ w C_ u ) -> ( ( w " { P } ) X. ( w " { P } ) ) C_ v ) ) |
| 73 | 72 | reximdva | |- ( ( ( ( U e. ( UnifOn ` X ) /\ P e. X /\ v e. U ) /\ u e. U ) /\ ( u o. u ) C_ v ) -> ( E. w e. U ( `' w = w /\ w C_ u ) -> E. w e. U ( ( w " { P } ) X. ( w " { P } ) ) C_ v ) ) |
| 74 | 53 73 | mpd | |- ( ( ( ( U e. ( UnifOn ` X ) /\ P e. X /\ v e. U ) /\ u e. U ) /\ ( u o. u ) C_ v ) -> E. w e. U ( ( w " { P } ) X. ( w " { P } ) ) C_ v ) |
| 75 | ustexhalf | |- ( ( U e. ( UnifOn ` X ) /\ v e. U ) -> E. u e. U ( u o. u ) C_ v ) |
|
| 76 | 75 | 3adant2 | |- ( ( U e. ( UnifOn ` X ) /\ P e. X /\ v e. U ) -> E. u e. U ( u o. u ) C_ v ) |
| 77 | 74 76 | r19.29a | |- ( ( U e. ( UnifOn ` X ) /\ P e. X /\ v e. U ) -> E. w e. U ( ( w " { P } ) X. ( w " { P } ) ) C_ v ) |
| 78 | 47 48 49 77 | syl3anc | |- ( ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) /\ v e. U ) -> E. w e. U ( ( w " { P } ) X. ( w " { P } ) ) C_ v ) |
| 79 | 46 78 | r19.29a | |- ( ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) /\ v e. U ) -> E. a e. ( ( nei ` J ) ` { P } ) ( a X. a ) C_ v ) |
| 80 | 79 | ralrimiva | |- ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) -> A. v e. U E. a e. ( ( nei ` J ) ` { P } ) ( a X. a ) C_ v ) |
| 81 | iscfilu | |- ( U e. ( UnifOn ` X ) -> ( ( ( nei ` J ) ` { P } ) e. ( CauFilU ` U ) <-> ( ( ( nei ` J ) ` { P } ) e. ( fBas ` X ) /\ A. v e. U E. a e. ( ( nei ` J ) ` { P } ) ( a X. a ) C_ v ) ) ) |
|
| 82 | 27 81 | syl | |- ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) -> ( ( ( nei ` J ) ` { P } ) e. ( CauFilU ` U ) <-> ( ( ( nei ` J ) ` { P } ) e. ( fBas ` X ) /\ A. v e. U E. a e. ( ( nei ` J ) ` { P } ) ( a X. a ) C_ v ) ) ) |
| 83 | 13 80 82 | mpbir2and | |- ( ( W e. UnifSp /\ W e. TopSp /\ P e. X ) -> ( ( nei ` J ) ` { P } ) e. ( CauFilU ` U ) ) |