This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an uniform space, a neighboring filter is a Cauchy filter base. (Contributed by Thierry Arnoux, 24-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | neipcfilu.x | ⊢ 𝑋 = ( Base ‘ 𝑊 ) | |
| neipcfilu.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | ||
| neipcfilu.u | ⊢ 𝑈 = ( UnifSt ‘ 𝑊 ) | ||
| Assertion | neipcfilu | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∈ ( CauFilu ‘ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neipcfilu.x | ⊢ 𝑋 = ( Base ‘ 𝑊 ) | |
| 2 | neipcfilu.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | |
| 3 | neipcfilu.u | ⊢ 𝑈 = ( UnifSt ‘ 𝑊 ) | |
| 4 | simp2 | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) → 𝑊 ∈ TopSp ) | |
| 5 | 1 2 | istps | ⊢ ( 𝑊 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 6 | 4 5 | sylib | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 7 | simp3 | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) → 𝑃 ∈ 𝑋 ) | |
| 8 | 7 | snssd | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) → { 𝑃 } ⊆ 𝑋 ) |
| 9 | 7 | snn0d | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) → { 𝑃 } ≠ ∅ ) |
| 10 | neifil | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ { 𝑃 } ⊆ 𝑋 ∧ { 𝑃 } ≠ ∅ ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∈ ( Fil ‘ 𝑋 ) ) | |
| 11 | 6 8 9 10 | syl3anc | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∈ ( Fil ‘ 𝑋 ) ) |
| 12 | filfbas | ⊢ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∈ ( Fil ‘ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∈ ( fBas ‘ 𝑋 ) ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∈ ( fBas ‘ 𝑋 ) ) |
| 14 | eqid | ⊢ ( 𝑤 “ { 𝑃 } ) = ( 𝑤 “ { 𝑃 } ) | |
| 15 | imaeq1 | ⊢ ( 𝑣 = 𝑤 → ( 𝑣 “ { 𝑃 } ) = ( 𝑤 “ { 𝑃 } ) ) | |
| 16 | 15 | rspceeqv | ⊢ ( ( 𝑤 ∈ 𝑈 ∧ ( 𝑤 “ { 𝑃 } ) = ( 𝑤 “ { 𝑃 } ) ) → ∃ 𝑣 ∈ 𝑈 ( 𝑤 “ { 𝑃 } ) = ( 𝑣 “ { 𝑃 } ) ) |
| 17 | 14 16 | mpan2 | ⊢ ( 𝑤 ∈ 𝑈 → ∃ 𝑣 ∈ 𝑈 ( 𝑤 “ { 𝑃 } ) = ( 𝑣 “ { 𝑃 } ) ) |
| 18 | vex | ⊢ 𝑤 ∈ V | |
| 19 | 18 | imaex | ⊢ ( 𝑤 “ { 𝑃 } ) ∈ V |
| 20 | eqid | ⊢ ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) = ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) | |
| 21 | 20 | elrnmpt | ⊢ ( ( 𝑤 “ { 𝑃 } ) ∈ V → ( ( 𝑤 “ { 𝑃 } ) ∈ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ↔ ∃ 𝑣 ∈ 𝑈 ( 𝑤 “ { 𝑃 } ) = ( 𝑣 “ { 𝑃 } ) ) ) |
| 22 | 19 21 | ax-mp | ⊢ ( ( 𝑤 “ { 𝑃 } ) ∈ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ↔ ∃ 𝑣 ∈ 𝑈 ( 𝑤 “ { 𝑃 } ) = ( 𝑣 “ { 𝑃 } ) ) |
| 23 | 17 22 | sylibr | ⊢ ( 𝑤 ∈ 𝑈 → ( 𝑤 “ { 𝑃 } ) ∈ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) |
| 24 | 23 | ad2antlr | ⊢ ( ( ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) → ( 𝑤 “ { 𝑃 } ) ∈ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) |
| 25 | 1 3 2 | isusp | ⊢ ( 𝑊 ∈ UnifSp ↔ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐽 = ( unifTop ‘ 𝑈 ) ) ) |
| 26 | 25 | simplbi | ⊢ ( 𝑊 ∈ UnifSp → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
| 27 | 26 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
| 28 | eqid | ⊢ ( unifTop ‘ 𝑈 ) = ( unifTop ‘ 𝑈 ) | |
| 29 | 28 | utopsnneip | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( nei ‘ ( unifTop ‘ 𝑈 ) ) ‘ { 𝑃 } ) = ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) |
| 30 | 27 7 29 | syl2anc | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) → ( ( nei ‘ ( unifTop ‘ 𝑈 ) ) ‘ { 𝑃 } ) = ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) |
| 31 | 30 | eleq2d | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝑤 “ { 𝑃 } ) ∈ ( ( nei ‘ ( unifTop ‘ 𝑈 ) ) ‘ { 𝑃 } ) ↔ ( 𝑤 “ { 𝑃 } ) ∈ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) ) |
| 32 | 31 | ad3antrrr | ⊢ ( ( ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) → ( ( 𝑤 “ { 𝑃 } ) ∈ ( ( nei ‘ ( unifTop ‘ 𝑈 ) ) ‘ { 𝑃 } ) ↔ ( 𝑤 “ { 𝑃 } ) ∈ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) ) |
| 33 | 24 32 | mpbird | ⊢ ( ( ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) → ( 𝑤 “ { 𝑃 } ) ∈ ( ( nei ‘ ( unifTop ‘ 𝑈 ) ) ‘ { 𝑃 } ) ) |
| 34 | simpl1 | ⊢ ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑤 ∈ 𝑈 ∧ ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) ) → 𝑊 ∈ UnifSp ) | |
| 35 | 34 | 3anassrs | ⊢ ( ( ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) → 𝑊 ∈ UnifSp ) |
| 36 | 25 | simprbi | ⊢ ( 𝑊 ∈ UnifSp → 𝐽 = ( unifTop ‘ 𝑈 ) ) |
| 37 | 35 36 | syl | ⊢ ( ( ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) → 𝐽 = ( unifTop ‘ 𝑈 ) ) |
| 38 | 37 | fveq2d | ⊢ ( ( ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) → ( nei ‘ 𝐽 ) = ( nei ‘ ( unifTop ‘ 𝑈 ) ) ) |
| 39 | 38 | fveq1d | ⊢ ( ( ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) = ( ( nei ‘ ( unifTop ‘ 𝑈 ) ) ‘ { 𝑃 } ) ) |
| 40 | 33 39 | eleqtrrd | ⊢ ( ( ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) → ( 𝑤 “ { 𝑃 } ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) |
| 41 | simpr | ⊢ ( ( ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) → ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) | |
| 42 | id | ⊢ ( 𝑎 = ( 𝑤 “ { 𝑃 } ) → 𝑎 = ( 𝑤 “ { 𝑃 } ) ) | |
| 43 | 42 | sqxpeqd | ⊢ ( 𝑎 = ( 𝑤 “ { 𝑃 } ) → ( 𝑎 × 𝑎 ) = ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ) |
| 44 | 43 | sseq1d | ⊢ ( 𝑎 = ( 𝑤 “ { 𝑃 } ) → ( ( 𝑎 × 𝑎 ) ⊆ 𝑣 ↔ ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) ) |
| 45 | 44 | rspcev | ⊢ ( ( ( 𝑤 “ { 𝑃 } ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∧ ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) → ∃ 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
| 46 | 40 41 45 | syl2anc | ⊢ ( ( ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) → ∃ 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
| 47 | 27 | adantr | ⊢ ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
| 48 | 7 | adantr | ⊢ ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) → 𝑃 ∈ 𝑋 ) |
| 49 | simpr | ⊢ ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) → 𝑣 ∈ 𝑈 ) | |
| 50 | simpll1 | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 51 | simplr | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) → 𝑢 ∈ 𝑈 ) | |
| 52 | ustexsym | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 ∈ 𝑈 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) | |
| 53 | 50 51 52 | syl2anc | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) |
| 54 | 50 | ad2antrr | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
| 55 | simplr | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) → 𝑤 ∈ 𝑈 ) | |
| 56 | ustssxp | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) → 𝑤 ⊆ ( 𝑋 × 𝑋 ) ) | |
| 57 | 54 55 56 | syl2anc | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) → 𝑤 ⊆ ( 𝑋 × 𝑋 ) ) |
| 58 | simpll2 | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ∧ 𝑤 ∈ 𝑈 ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) ) → 𝑃 ∈ 𝑋 ) | |
| 59 | 58 | 3anassrs | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) → 𝑃 ∈ 𝑋 ) |
| 60 | ustneism | ⊢ ( ( 𝑤 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ ( 𝑤 ∘ ◡ 𝑤 ) ) | |
| 61 | 57 59 60 | syl2anc | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) → ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ ( 𝑤 ∘ ◡ 𝑤 ) ) |
| 62 | simprl | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) → ◡ 𝑤 = 𝑤 ) | |
| 63 | 62 | coeq2d | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) → ( 𝑤 ∘ ◡ 𝑤 ) = ( 𝑤 ∘ 𝑤 ) ) |
| 64 | coss1 | ⊢ ( 𝑤 ⊆ 𝑢 → ( 𝑤 ∘ 𝑤 ) ⊆ ( 𝑢 ∘ 𝑤 ) ) | |
| 65 | coss2 | ⊢ ( 𝑤 ⊆ 𝑢 → ( 𝑢 ∘ 𝑤 ) ⊆ ( 𝑢 ∘ 𝑢 ) ) | |
| 66 | 64 65 | sstrd | ⊢ ( 𝑤 ⊆ 𝑢 → ( 𝑤 ∘ 𝑤 ) ⊆ ( 𝑢 ∘ 𝑢 ) ) |
| 67 | 66 | ad2antll | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) → ( 𝑤 ∘ 𝑤 ) ⊆ ( 𝑢 ∘ 𝑢 ) ) |
| 68 | simpllr | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) → ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) | |
| 69 | 67 68 | sstrd | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) → ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) |
| 70 | 63 69 | eqsstrd | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) → ( 𝑤 ∘ ◡ 𝑤 ) ⊆ 𝑣 ) |
| 71 | 61 70 | sstrd | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) → ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) |
| 72 | 71 | ex | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑤 ∈ 𝑈 ) → ( ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) → ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) ) |
| 73 | 72 | reximdva | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) → ( ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) → ∃ 𝑤 ∈ 𝑈 ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) ) |
| 74 | 53 73 | mpd | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) → ∃ 𝑤 ∈ 𝑈 ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) |
| 75 | ustexhalf | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑢 ∈ 𝑈 ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) | |
| 76 | 75 | 3adant2 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑢 ∈ 𝑈 ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) |
| 77 | 74 76 | r19.29a | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑤 ∈ 𝑈 ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) |
| 78 | 47 48 49 77 | syl3anc | ⊢ ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑤 ∈ 𝑈 ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) |
| 79 | 46 78 | r19.29a | ⊢ ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
| 80 | 79 | ralrimiva | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) → ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
| 81 | iscfilu | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∈ ( CauFilu ‘ 𝑈 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) ) | |
| 82 | 27 81 | syl | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∈ ( CauFilu ‘ 𝑈 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) ) |
| 83 | 13 80 82 | mpbir2and | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∈ ( CauFilu ‘ 𝑈 ) ) |