This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The neighborhoods of a point P for the topology induced by an uniform space U . (Contributed by Thierry Arnoux, 13-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | utoptop.1 | |- J = ( unifTop ` U ) |
|
| Assertion | utopsnneip | |- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> ( ( nei ` J ) ` { P } ) = ran ( v e. U |-> ( v " { P } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utoptop.1 | |- J = ( unifTop ` U ) |
|
| 2 | fveq2 | |- ( r = p -> ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` r ) = ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` p ) ) |
|
| 3 | 2 | eleq2d | |- ( r = p -> ( b e. ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` r ) <-> b e. ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` p ) ) ) |
| 4 | 3 | cbvralvw | |- ( A. r e. b b e. ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` r ) <-> A. p e. b b e. ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` p ) ) |
| 5 | eleq1w | |- ( b = a -> ( b e. ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` p ) <-> a e. ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` p ) ) ) |
|
| 6 | 5 | raleqbi1dv | |- ( b = a -> ( A. p e. b b e. ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` p ) <-> A. p e. a a e. ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` p ) ) ) |
| 7 | 4 6 | bitrid | |- ( b = a -> ( A. r e. b b e. ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` r ) <-> A. p e. a a e. ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` p ) ) ) |
| 8 | 7 | cbvrabv | |- { b e. ~P X | A. r e. b b e. ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` r ) } = { a e. ~P X | A. p e. a a e. ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` p ) } |
| 9 | simpl | |- ( ( q = p /\ v e. U ) -> q = p ) |
|
| 10 | 9 | sneqd | |- ( ( q = p /\ v e. U ) -> { q } = { p } ) |
| 11 | 10 | imaeq2d | |- ( ( q = p /\ v e. U ) -> ( v " { q } ) = ( v " { p } ) ) |
| 12 | 11 | mpteq2dva | |- ( q = p -> ( v e. U |-> ( v " { q } ) ) = ( v e. U |-> ( v " { p } ) ) ) |
| 13 | 12 | rneqd | |- ( q = p -> ran ( v e. U |-> ( v " { q } ) ) = ran ( v e. U |-> ( v " { p } ) ) ) |
| 14 | 13 | cbvmptv | |- ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) = ( p e. X |-> ran ( v e. U |-> ( v " { p } ) ) ) |
| 15 | 1 8 14 | utopsnneiplem | |- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> ( ( nei ` J ) ` { P } ) = ran ( v e. U |-> ( v " { P } ) ) ) |