This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For a point A in X , ( V " { A } ) is small enough in ( V o.`' V ) ` . This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 18-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ustneism | |- ( ( V C_ ( X X. X ) /\ A e. X ) -> ( ( V " { A } ) X. ( V " { A } ) ) C_ ( V o. `' V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snnzg | |- ( A e. X -> { A } =/= (/) ) |
|
| 2 | 1 | adantl | |- ( ( V C_ ( X X. X ) /\ A e. X ) -> { A } =/= (/) ) |
| 3 | xpco | |- ( { A } =/= (/) -> ( ( { A } X. ( V " { A } ) ) o. ( ( V " { A } ) X. { A } ) ) = ( ( V " { A } ) X. ( V " { A } ) ) ) |
|
| 4 | 2 3 | syl | |- ( ( V C_ ( X X. X ) /\ A e. X ) -> ( ( { A } X. ( V " { A } ) ) o. ( ( V " { A } ) X. { A } ) ) = ( ( V " { A } ) X. ( V " { A } ) ) ) |
| 5 | cnvxp | |- `' ( { A } X. ( V " { A } ) ) = ( ( V " { A } ) X. { A } ) |
|
| 6 | ressn | |- ( V |` { A } ) = ( { A } X. ( V " { A } ) ) |
|
| 7 | 6 | cnveqi | |- `' ( V |` { A } ) = `' ( { A } X. ( V " { A } ) ) |
| 8 | resss | |- ( V |` { A } ) C_ V |
|
| 9 | cnvss | |- ( ( V |` { A } ) C_ V -> `' ( V |` { A } ) C_ `' V ) |
|
| 10 | 8 9 | ax-mp | |- `' ( V |` { A } ) C_ `' V |
| 11 | 7 10 | eqsstrri | |- `' ( { A } X. ( V " { A } ) ) C_ `' V |
| 12 | 5 11 | eqsstrri | |- ( ( V " { A } ) X. { A } ) C_ `' V |
| 13 | coss2 | |- ( ( ( V " { A } ) X. { A } ) C_ `' V -> ( ( { A } X. ( V " { A } ) ) o. ( ( V " { A } ) X. { A } ) ) C_ ( ( { A } X. ( V " { A } ) ) o. `' V ) ) |
|
| 14 | 12 13 | mp1i | |- ( ( V C_ ( X X. X ) /\ A e. X ) -> ( ( { A } X. ( V " { A } ) ) o. ( ( V " { A } ) X. { A } ) ) C_ ( ( { A } X. ( V " { A } ) ) o. `' V ) ) |
| 15 | 6 8 | eqsstrri | |- ( { A } X. ( V " { A } ) ) C_ V |
| 16 | coss1 | |- ( ( { A } X. ( V " { A } ) ) C_ V -> ( ( { A } X. ( V " { A } ) ) o. `' V ) C_ ( V o. `' V ) ) |
|
| 17 | 15 16 | mp1i | |- ( ( V C_ ( X X. X ) /\ A e. X ) -> ( ( { A } X. ( V " { A } ) ) o. `' V ) C_ ( V o. `' V ) ) |
| 18 | 14 17 | sstrd | |- ( ( V C_ ( X X. X ) /\ A e. X ) -> ( ( { A } X. ( V " { A } ) ) o. ( ( V " { A } ) X. { A } ) ) C_ ( V o. `' V ) ) |
| 19 | 4 18 | eqsstrrd | |- ( ( V C_ ( X X. X ) /\ A e. X ) -> ( ( V " { A } ) X. ( V " { A } ) ) C_ ( V o. `' V ) ) |