This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate W is a uniform space. (Contributed by Thierry Arnoux, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isusp.1 | |- B = ( Base ` W ) |
|
| isusp.2 | |- U = ( UnifSt ` W ) |
||
| isusp.3 | |- J = ( TopOpen ` W ) |
||
| Assertion | isusp | |- ( W e. UnifSp <-> ( U e. ( UnifOn ` B ) /\ J = ( unifTop ` U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isusp.1 | |- B = ( Base ` W ) |
|
| 2 | isusp.2 | |- U = ( UnifSt ` W ) |
|
| 3 | isusp.3 | |- J = ( TopOpen ` W ) |
|
| 4 | elex | |- ( W e. UnifSp -> W e. _V ) |
|
| 5 | 0nep0 | |- (/) =/= { (/) } |
|
| 6 | fvprc | |- ( -. W e. _V -> ( Base ` W ) = (/) ) |
|
| 7 | 1 6 | eqtrid | |- ( -. W e. _V -> B = (/) ) |
| 8 | 7 | fveq2d | |- ( -. W e. _V -> ( UnifOn ` B ) = ( UnifOn ` (/) ) ) |
| 9 | ust0 | |- ( UnifOn ` (/) ) = { { (/) } } |
|
| 10 | 8 9 | eqtrdi | |- ( -. W e. _V -> ( UnifOn ` B ) = { { (/) } } ) |
| 11 | 10 | eleq2d | |- ( -. W e. _V -> ( U e. ( UnifOn ` B ) <-> U e. { { (/) } } ) ) |
| 12 | 2 | fvexi | |- U e. _V |
| 13 | 12 | elsn | |- ( U e. { { (/) } } <-> U = { (/) } ) |
| 14 | 11 13 | bitrdi | |- ( -. W e. _V -> ( U e. ( UnifOn ` B ) <-> U = { (/) } ) ) |
| 15 | fvprc | |- ( -. W e. _V -> ( UnifSt ` W ) = (/) ) |
|
| 16 | 2 15 | eqtrid | |- ( -. W e. _V -> U = (/) ) |
| 17 | 16 | eqeq1d | |- ( -. W e. _V -> ( U = { (/) } <-> (/) = { (/) } ) ) |
| 18 | 14 17 | bitrd | |- ( -. W e. _V -> ( U e. ( UnifOn ` B ) <-> (/) = { (/) } ) ) |
| 19 | 18 | necon3bbid | |- ( -. W e. _V -> ( -. U e. ( UnifOn ` B ) <-> (/) =/= { (/) } ) ) |
| 20 | 5 19 | mpbiri | |- ( -. W e. _V -> -. U e. ( UnifOn ` B ) ) |
| 21 | 20 | con4i | |- ( U e. ( UnifOn ` B ) -> W e. _V ) |
| 22 | 21 | adantr | |- ( ( U e. ( UnifOn ` B ) /\ J = ( unifTop ` U ) ) -> W e. _V ) |
| 23 | fveq2 | |- ( w = W -> ( UnifSt ` w ) = ( UnifSt ` W ) ) |
|
| 24 | 23 2 | eqtr4di | |- ( w = W -> ( UnifSt ` w ) = U ) |
| 25 | fveq2 | |- ( w = W -> ( Base ` w ) = ( Base ` W ) ) |
|
| 26 | 25 1 | eqtr4di | |- ( w = W -> ( Base ` w ) = B ) |
| 27 | 26 | fveq2d | |- ( w = W -> ( UnifOn ` ( Base ` w ) ) = ( UnifOn ` B ) ) |
| 28 | 24 27 | eleq12d | |- ( w = W -> ( ( UnifSt ` w ) e. ( UnifOn ` ( Base ` w ) ) <-> U e. ( UnifOn ` B ) ) ) |
| 29 | fveq2 | |- ( w = W -> ( TopOpen ` w ) = ( TopOpen ` W ) ) |
|
| 30 | 29 3 | eqtr4di | |- ( w = W -> ( TopOpen ` w ) = J ) |
| 31 | 24 | fveq2d | |- ( w = W -> ( unifTop ` ( UnifSt ` w ) ) = ( unifTop ` U ) ) |
| 32 | 30 31 | eqeq12d | |- ( w = W -> ( ( TopOpen ` w ) = ( unifTop ` ( UnifSt ` w ) ) <-> J = ( unifTop ` U ) ) ) |
| 33 | 28 32 | anbi12d | |- ( w = W -> ( ( ( UnifSt ` w ) e. ( UnifOn ` ( Base ` w ) ) /\ ( TopOpen ` w ) = ( unifTop ` ( UnifSt ` w ) ) ) <-> ( U e. ( UnifOn ` B ) /\ J = ( unifTop ` U ) ) ) ) |
| 34 | df-usp | |- UnifSp = { w | ( ( UnifSt ` w ) e. ( UnifOn ` ( Base ` w ) ) /\ ( TopOpen ` w ) = ( unifTop ` ( UnifSt ` w ) ) ) } |
|
| 35 | 33 34 | elab2g | |- ( W e. _V -> ( W e. UnifSp <-> ( U e. ( UnifOn ` B ) /\ J = ( unifTop ` U ) ) ) ) |
| 36 | 4 22 35 | pm5.21nii | |- ( W e. UnifSp <-> ( U e. ( UnifOn ` B ) /\ J = ( unifTop ` U ) ) ) |