This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an uniform structure, for any entourage V , there exists a smaller symmetrical entourage. (Contributed by Thierry Arnoux, 4-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ustexsym | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> E. w e. U ( `' w = w /\ w C_ V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplll | |- ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ x e. U ) /\ ( x o. x ) C_ V ) -> U e. ( UnifOn ` X ) ) |
|
| 2 | ustinvel | |- ( ( U e. ( UnifOn ` X ) /\ x e. U ) -> `' x e. U ) |
|
| 3 | 2 | ad4ant13 | |- ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ x e. U ) /\ ( x o. x ) C_ V ) -> `' x e. U ) |
| 4 | simplr | |- ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ x e. U ) /\ ( x o. x ) C_ V ) -> x e. U ) |
|
| 5 | ustincl | |- ( ( U e. ( UnifOn ` X ) /\ `' x e. U /\ x e. U ) -> ( `' x i^i x ) e. U ) |
|
| 6 | 1 3 4 5 | syl3anc | |- ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ x e. U ) /\ ( x o. x ) C_ V ) -> ( `' x i^i x ) e. U ) |
| 7 | ustrel | |- ( ( U e. ( UnifOn ` X ) /\ x e. U ) -> Rel x ) |
|
| 8 | dfrel2 | |- ( Rel x <-> `' `' x = x ) |
|
| 9 | 7 8 | sylib | |- ( ( U e. ( UnifOn ` X ) /\ x e. U ) -> `' `' x = x ) |
| 10 | 9 | ineq1d | |- ( ( U e. ( UnifOn ` X ) /\ x e. U ) -> ( `' `' x i^i `' x ) = ( x i^i `' x ) ) |
| 11 | cnvin | |- `' ( `' x i^i x ) = ( `' `' x i^i `' x ) |
|
| 12 | incom | |- ( `' x i^i x ) = ( x i^i `' x ) |
|
| 13 | 10 11 12 | 3eqtr4g | |- ( ( U e. ( UnifOn ` X ) /\ x e. U ) -> `' ( `' x i^i x ) = ( `' x i^i x ) ) |
| 14 | 13 | ad4ant13 | |- ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ x e. U ) /\ ( x o. x ) C_ V ) -> `' ( `' x i^i x ) = ( `' x i^i x ) ) |
| 15 | inss2 | |- ( `' x i^i x ) C_ x |
|
| 16 | ustssco | |- ( ( U e. ( UnifOn ` X ) /\ x e. U ) -> x C_ ( x o. x ) ) |
|
| 17 | 16 | ad4ant13 | |- ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ x e. U ) /\ ( x o. x ) C_ V ) -> x C_ ( x o. x ) ) |
| 18 | simpr | |- ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ x e. U ) /\ ( x o. x ) C_ V ) -> ( x o. x ) C_ V ) |
|
| 19 | 17 18 | sstrd | |- ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ x e. U ) /\ ( x o. x ) C_ V ) -> x C_ V ) |
| 20 | 15 19 | sstrid | |- ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ x e. U ) /\ ( x o. x ) C_ V ) -> ( `' x i^i x ) C_ V ) |
| 21 | cnveq | |- ( w = ( `' x i^i x ) -> `' w = `' ( `' x i^i x ) ) |
|
| 22 | id | |- ( w = ( `' x i^i x ) -> w = ( `' x i^i x ) ) |
|
| 23 | 21 22 | eqeq12d | |- ( w = ( `' x i^i x ) -> ( `' w = w <-> `' ( `' x i^i x ) = ( `' x i^i x ) ) ) |
| 24 | sseq1 | |- ( w = ( `' x i^i x ) -> ( w C_ V <-> ( `' x i^i x ) C_ V ) ) |
|
| 25 | 23 24 | anbi12d | |- ( w = ( `' x i^i x ) -> ( ( `' w = w /\ w C_ V ) <-> ( `' ( `' x i^i x ) = ( `' x i^i x ) /\ ( `' x i^i x ) C_ V ) ) ) |
| 26 | 25 | rspcev | |- ( ( ( `' x i^i x ) e. U /\ ( `' ( `' x i^i x ) = ( `' x i^i x ) /\ ( `' x i^i x ) C_ V ) ) -> E. w e. U ( `' w = w /\ w C_ V ) ) |
| 27 | 6 14 20 26 | syl12anc | |- ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ x e. U ) /\ ( x o. x ) C_ V ) -> E. w e. U ( `' w = w /\ w C_ V ) ) |
| 28 | ustexhalf | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> E. x e. U ( x o. x ) C_ V ) |
|
| 29 | 27 28 | r19.29a | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> E. w e. U ( `' w = w /\ w C_ V ) ) |