This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Product of group multiples, for positive multiples in a semigroup. (Contributed by Mario Carneiro, 13-Dec-2014) (Revised by AV, 29-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgass.b | |- B = ( Base ` G ) |
|
| mulgass.t | |- .x. = ( .g ` G ) |
||
| Assertion | mulgnnass | |- ( ( G e. Smgrp /\ ( M e. NN /\ N e. NN /\ X e. B ) ) -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgass.b | |- B = ( Base ` G ) |
|
| 2 | mulgass.t | |- .x. = ( .g ` G ) |
|
| 3 | oveq1 | |- ( n = 1 -> ( n x. N ) = ( 1 x. N ) ) |
|
| 4 | 3 | oveq1d | |- ( n = 1 -> ( ( n x. N ) .x. X ) = ( ( 1 x. N ) .x. X ) ) |
| 5 | oveq1 | |- ( n = 1 -> ( n .x. ( N .x. X ) ) = ( 1 .x. ( N .x. X ) ) ) |
|
| 6 | 4 5 | eqeq12d | |- ( n = 1 -> ( ( ( n x. N ) .x. X ) = ( n .x. ( N .x. X ) ) <-> ( ( 1 x. N ) .x. X ) = ( 1 .x. ( N .x. X ) ) ) ) |
| 7 | 6 | imbi2d | |- ( n = 1 -> ( ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( n x. N ) .x. X ) = ( n .x. ( N .x. X ) ) ) <-> ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( 1 x. N ) .x. X ) = ( 1 .x. ( N .x. X ) ) ) ) ) |
| 8 | oveq1 | |- ( n = m -> ( n x. N ) = ( m x. N ) ) |
|
| 9 | 8 | oveq1d | |- ( n = m -> ( ( n x. N ) .x. X ) = ( ( m x. N ) .x. X ) ) |
| 10 | oveq1 | |- ( n = m -> ( n .x. ( N .x. X ) ) = ( m .x. ( N .x. X ) ) ) |
|
| 11 | 9 10 | eqeq12d | |- ( n = m -> ( ( ( n x. N ) .x. X ) = ( n .x. ( N .x. X ) ) <-> ( ( m x. N ) .x. X ) = ( m .x. ( N .x. X ) ) ) ) |
| 12 | 11 | imbi2d | |- ( n = m -> ( ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( n x. N ) .x. X ) = ( n .x. ( N .x. X ) ) ) <-> ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( m x. N ) .x. X ) = ( m .x. ( N .x. X ) ) ) ) ) |
| 13 | oveq1 | |- ( n = ( m + 1 ) -> ( n x. N ) = ( ( m + 1 ) x. N ) ) |
|
| 14 | 13 | oveq1d | |- ( n = ( m + 1 ) -> ( ( n x. N ) .x. X ) = ( ( ( m + 1 ) x. N ) .x. X ) ) |
| 15 | oveq1 | |- ( n = ( m + 1 ) -> ( n .x. ( N .x. X ) ) = ( ( m + 1 ) .x. ( N .x. X ) ) ) |
|
| 16 | 14 15 | eqeq12d | |- ( n = ( m + 1 ) -> ( ( ( n x. N ) .x. X ) = ( n .x. ( N .x. X ) ) <-> ( ( ( m + 1 ) x. N ) .x. X ) = ( ( m + 1 ) .x. ( N .x. X ) ) ) ) |
| 17 | 16 | imbi2d | |- ( n = ( m + 1 ) -> ( ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( n x. N ) .x. X ) = ( n .x. ( N .x. X ) ) ) <-> ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( ( m + 1 ) x. N ) .x. X ) = ( ( m + 1 ) .x. ( N .x. X ) ) ) ) ) |
| 18 | oveq1 | |- ( n = M -> ( n x. N ) = ( M x. N ) ) |
|
| 19 | 18 | oveq1d | |- ( n = M -> ( ( n x. N ) .x. X ) = ( ( M x. N ) .x. X ) ) |
| 20 | oveq1 | |- ( n = M -> ( n .x. ( N .x. X ) ) = ( M .x. ( N .x. X ) ) ) |
|
| 21 | 19 20 | eqeq12d | |- ( n = M -> ( ( ( n x. N ) .x. X ) = ( n .x. ( N .x. X ) ) <-> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) ) |
| 22 | 21 | imbi2d | |- ( n = M -> ( ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( n x. N ) .x. X ) = ( n .x. ( N .x. X ) ) ) <-> ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) ) ) |
| 23 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 24 | 23 | mullidd | |- ( N e. NN -> ( 1 x. N ) = N ) |
| 25 | 24 | 3ad2ant1 | |- ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( 1 x. N ) = N ) |
| 26 | 25 | oveq1d | |- ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( 1 x. N ) .x. X ) = ( N .x. X ) ) |
| 27 | sgrpmgm | |- ( G e. Smgrp -> G e. Mgm ) |
|
| 28 | 1 2 | mulgnncl | |- ( ( G e. Mgm /\ N e. NN /\ X e. B ) -> ( N .x. X ) e. B ) |
| 29 | 27 28 | syl3an1 | |- ( ( G e. Smgrp /\ N e. NN /\ X e. B ) -> ( N .x. X ) e. B ) |
| 30 | 29 | 3coml | |- ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( N .x. X ) e. B ) |
| 31 | 1 2 | mulg1 | |- ( ( N .x. X ) e. B -> ( 1 .x. ( N .x. X ) ) = ( N .x. X ) ) |
| 32 | 30 31 | syl | |- ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( 1 .x. ( N .x. X ) ) = ( N .x. X ) ) |
| 33 | 26 32 | eqtr4d | |- ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( 1 x. N ) .x. X ) = ( 1 .x. ( N .x. X ) ) ) |
| 34 | oveq1 | |- ( ( ( m x. N ) .x. X ) = ( m .x. ( N .x. X ) ) -> ( ( ( m x. N ) .x. X ) ( +g ` G ) ( N .x. X ) ) = ( ( m .x. ( N .x. X ) ) ( +g ` G ) ( N .x. X ) ) ) |
|
| 35 | nncn | |- ( m e. NN -> m e. CC ) |
|
| 36 | 35 | adantr | |- ( ( m e. NN /\ ( N e. NN /\ X e. B /\ G e. Smgrp ) ) -> m e. CC ) |
| 37 | simpr1 | |- ( ( m e. NN /\ ( N e. NN /\ X e. B /\ G e. Smgrp ) ) -> N e. NN ) |
|
| 38 | 37 | nncnd | |- ( ( m e. NN /\ ( N e. NN /\ X e. B /\ G e. Smgrp ) ) -> N e. CC ) |
| 39 | 36 38 | adddirp1d | |- ( ( m e. NN /\ ( N e. NN /\ X e. B /\ G e. Smgrp ) ) -> ( ( m + 1 ) x. N ) = ( ( m x. N ) + N ) ) |
| 40 | 39 | oveq1d | |- ( ( m e. NN /\ ( N e. NN /\ X e. B /\ G e. Smgrp ) ) -> ( ( ( m + 1 ) x. N ) .x. X ) = ( ( ( m x. N ) + N ) .x. X ) ) |
| 41 | simpr3 | |- ( ( m e. NN /\ ( N e. NN /\ X e. B /\ G e. Smgrp ) ) -> G e. Smgrp ) |
|
| 42 | nnmulcl | |- ( ( m e. NN /\ N e. NN ) -> ( m x. N ) e. NN ) |
|
| 43 | 42 | 3ad2antr1 | |- ( ( m e. NN /\ ( N e. NN /\ X e. B /\ G e. Smgrp ) ) -> ( m x. N ) e. NN ) |
| 44 | simpr2 | |- ( ( m e. NN /\ ( N e. NN /\ X e. B /\ G e. Smgrp ) ) -> X e. B ) |
|
| 45 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 46 | 1 2 45 | mulgnndir | |- ( ( G e. Smgrp /\ ( ( m x. N ) e. NN /\ N e. NN /\ X e. B ) ) -> ( ( ( m x. N ) + N ) .x. X ) = ( ( ( m x. N ) .x. X ) ( +g ` G ) ( N .x. X ) ) ) |
| 47 | 41 43 37 44 46 | syl13anc | |- ( ( m e. NN /\ ( N e. NN /\ X e. B /\ G e. Smgrp ) ) -> ( ( ( m x. N ) + N ) .x. X ) = ( ( ( m x. N ) .x. X ) ( +g ` G ) ( N .x. X ) ) ) |
| 48 | 40 47 | eqtrd | |- ( ( m e. NN /\ ( N e. NN /\ X e. B /\ G e. Smgrp ) ) -> ( ( ( m + 1 ) x. N ) .x. X ) = ( ( ( m x. N ) .x. X ) ( +g ` G ) ( N .x. X ) ) ) |
| 49 | 1 2 45 | mulgnnp1 | |- ( ( m e. NN /\ ( N .x. X ) e. B ) -> ( ( m + 1 ) .x. ( N .x. X ) ) = ( ( m .x. ( N .x. X ) ) ( +g ` G ) ( N .x. X ) ) ) |
| 50 | 30 49 | sylan2 | |- ( ( m e. NN /\ ( N e. NN /\ X e. B /\ G e. Smgrp ) ) -> ( ( m + 1 ) .x. ( N .x. X ) ) = ( ( m .x. ( N .x. X ) ) ( +g ` G ) ( N .x. X ) ) ) |
| 51 | 48 50 | eqeq12d | |- ( ( m e. NN /\ ( N e. NN /\ X e. B /\ G e. Smgrp ) ) -> ( ( ( ( m + 1 ) x. N ) .x. X ) = ( ( m + 1 ) .x. ( N .x. X ) ) <-> ( ( ( m x. N ) .x. X ) ( +g ` G ) ( N .x. X ) ) = ( ( m .x. ( N .x. X ) ) ( +g ` G ) ( N .x. X ) ) ) ) |
| 52 | 34 51 | imbitrrid | |- ( ( m e. NN /\ ( N e. NN /\ X e. B /\ G e. Smgrp ) ) -> ( ( ( m x. N ) .x. X ) = ( m .x. ( N .x. X ) ) -> ( ( ( m + 1 ) x. N ) .x. X ) = ( ( m + 1 ) .x. ( N .x. X ) ) ) ) |
| 53 | 52 | ex | |- ( m e. NN -> ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( ( m x. N ) .x. X ) = ( m .x. ( N .x. X ) ) -> ( ( ( m + 1 ) x. N ) .x. X ) = ( ( m + 1 ) .x. ( N .x. X ) ) ) ) ) |
| 54 | 53 | a2d | |- ( m e. NN -> ( ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( m x. N ) .x. X ) = ( m .x. ( N .x. X ) ) ) -> ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( ( m + 1 ) x. N ) .x. X ) = ( ( m + 1 ) .x. ( N .x. X ) ) ) ) ) |
| 55 | 7 12 17 22 33 54 | nnind | |- ( M e. NN -> ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) ) |
| 56 | 55 | 3expd | |- ( M e. NN -> ( N e. NN -> ( X e. B -> ( G e. Smgrp -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) ) ) ) |
| 57 | 56 | com4r | |- ( G e. Smgrp -> ( M e. NN -> ( N e. NN -> ( X e. B -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) ) ) ) |
| 58 | 57 | 3imp2 | |- ( ( G e. Smgrp /\ ( M e. NN /\ N e. NN /\ X e. B ) ) -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) |