This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 11-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulg1.b | |- B = ( Base ` G ) |
|
| mulg1.m | |- .x. = ( .g ` G ) |
||
| mulgnegnn.i | |- I = ( invg ` G ) |
||
| Assertion | mulgnegnn | |- ( ( N e. NN /\ X e. B ) -> ( -u N .x. X ) = ( I ` ( N .x. X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulg1.b | |- B = ( Base ` G ) |
|
| 2 | mulg1.m | |- .x. = ( .g ` G ) |
|
| 3 | mulgnegnn.i | |- I = ( invg ` G ) |
|
| 4 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 5 | 4 | negnegd | |- ( N e. NN -> -u -u N = N ) |
| 6 | 5 | adantr | |- ( ( N e. NN /\ X e. B ) -> -u -u N = N ) |
| 7 | 6 | fveq2d | |- ( ( N e. NN /\ X e. B ) -> ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u -u N ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) |
| 8 | 7 | fveq2d | |- ( ( N e. NN /\ X e. B ) -> ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u -u N ) ) = ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) ) |
| 9 | nnnegz | |- ( N e. NN -> -u N e. ZZ ) |
|
| 10 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 11 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 12 | eqid | |- seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) |
|
| 13 | 1 10 11 3 2 12 | mulgval | |- ( ( -u N e. ZZ /\ X e. B ) -> ( -u N .x. X ) = if ( -u N = 0 , ( 0g ` G ) , if ( 0 < -u N , ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) , ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u -u N ) ) ) ) ) |
| 14 | 9 13 | sylan | |- ( ( N e. NN /\ X e. B ) -> ( -u N .x. X ) = if ( -u N = 0 , ( 0g ` G ) , if ( 0 < -u N , ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) , ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u -u N ) ) ) ) ) |
| 15 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
| 16 | negeq0 | |- ( N e. CC -> ( N = 0 <-> -u N = 0 ) ) |
|
| 17 | 16 | necon3abid | |- ( N e. CC -> ( N =/= 0 <-> -. -u N = 0 ) ) |
| 18 | 4 17 | syl | |- ( N e. NN -> ( N =/= 0 <-> -. -u N = 0 ) ) |
| 19 | 15 18 | mpbid | |- ( N e. NN -> -. -u N = 0 ) |
| 20 | 19 | iffalsed | |- ( N e. NN -> if ( -u N = 0 , ( 0g ` G ) , if ( 0 < -u N , ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) , ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u -u N ) ) ) ) = if ( 0 < -u N , ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) , ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u -u N ) ) ) ) |
| 21 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 22 | 21 | renegcld | |- ( N e. NN -> -u N e. RR ) |
| 23 | nngt0 | |- ( N e. NN -> 0 < N ) |
|
| 24 | 21 | lt0neg2d | |- ( N e. NN -> ( 0 < N <-> -u N < 0 ) ) |
| 25 | 23 24 | mpbid | |- ( N e. NN -> -u N < 0 ) |
| 26 | 0re | |- 0 e. RR |
|
| 27 | ltnsym | |- ( ( -u N e. RR /\ 0 e. RR ) -> ( -u N < 0 -> -. 0 < -u N ) ) |
|
| 28 | 26 27 | mpan2 | |- ( -u N e. RR -> ( -u N < 0 -> -. 0 < -u N ) ) |
| 29 | 22 25 28 | sylc | |- ( N e. NN -> -. 0 < -u N ) |
| 30 | 29 | iffalsed | |- ( N e. NN -> if ( 0 < -u N , ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) , ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u -u N ) ) ) = ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u -u N ) ) ) |
| 31 | 20 30 | eqtrd | |- ( N e. NN -> if ( -u N = 0 , ( 0g ` G ) , if ( 0 < -u N , ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) , ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u -u N ) ) ) ) = ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u -u N ) ) ) |
| 32 | 31 | adantr | |- ( ( N e. NN /\ X e. B ) -> if ( -u N = 0 , ( 0g ` G ) , if ( 0 < -u N , ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) , ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u -u N ) ) ) ) = ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u -u N ) ) ) |
| 33 | 14 32 | eqtrd | |- ( ( N e. NN /\ X e. B ) -> ( -u N .x. X ) = ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u -u N ) ) ) |
| 34 | 1 10 2 12 | mulgnn | |- ( ( N e. NN /\ X e. B ) -> ( N .x. X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) |
| 35 | 34 | fveq2d | |- ( ( N e. NN /\ X e. B ) -> ( I ` ( N .x. X ) ) = ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) ) |
| 36 | 8 33 35 | 3eqtr4d | |- ( ( N e. NN /\ X e. B ) -> ( -u N .x. X ) = ( I ` ( N .x. X ) ) ) |