This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative of a positive integer is an integer. (Contributed by NM, 12-Jan-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnnegz | |- ( N e. NN -> -u N e. ZZ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 2 | 1 | renegcld | |- ( N e. NN -> -u N e. RR ) |
| 3 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 4 | negneg | |- ( N e. CC -> -u -u N = N ) |
|
| 5 | 4 | eleq1d | |- ( N e. CC -> ( -u -u N e. NN <-> N e. NN ) ) |
| 6 | 5 | biimprd | |- ( N e. CC -> ( N e. NN -> -u -u N e. NN ) ) |
| 7 | 3 6 | mpcom | |- ( N e. NN -> -u -u N e. NN ) |
| 8 | 7 | 3mix3d | |- ( N e. NN -> ( -u N = 0 \/ -u N e. NN \/ -u -u N e. NN ) ) |
| 9 | elz | |- ( -u N e. ZZ <-> ( -u N e. RR /\ ( -u N = 0 \/ -u N e. NN \/ -u -u N e. NN ) ) ) |
|
| 10 | 2 8 9 | sylanbrc | |- ( N e. NN -> -u N e. ZZ ) |