This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation at negative one. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by Mario Carneiro, 20-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnncl.b | |- B = ( Base ` G ) |
|
| mulgnncl.t | |- .x. = ( .g ` G ) |
||
| mulgneg.i | |- I = ( invg ` G ) |
||
| Assertion | mulgm1 | |- ( ( G e. Grp /\ X e. B ) -> ( -u 1 .x. X ) = ( I ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnncl.b | |- B = ( Base ` G ) |
|
| 2 | mulgnncl.t | |- .x. = ( .g ` G ) |
|
| 3 | mulgneg.i | |- I = ( invg ` G ) |
|
| 4 | 1z | |- 1 e. ZZ |
|
| 5 | 1 2 3 | mulgneg | |- ( ( G e. Grp /\ 1 e. ZZ /\ X e. B ) -> ( -u 1 .x. X ) = ( I ` ( 1 .x. X ) ) ) |
| 6 | 4 5 | mp3an2 | |- ( ( G e. Grp /\ X e. B ) -> ( -u 1 .x. X ) = ( I ` ( 1 .x. X ) ) ) |
| 7 | 1 2 | mulg1 | |- ( X e. B -> ( 1 .x. X ) = X ) |
| 8 | 7 | adantl | |- ( ( G e. Grp /\ X e. B ) -> ( 1 .x. X ) = X ) |
| 9 | 8 | fveq2d | |- ( ( G e. Grp /\ X e. B ) -> ( I ` ( 1 .x. X ) ) = ( I ` X ) ) |
| 10 | 6 9 | eqtrd | |- ( ( G e. Grp /\ X e. B ) -> ( -u 1 .x. X ) = ( I ` X ) ) |