This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uzm1 | |- ( N e. ( ZZ>= ` M ) -> ( N = M \/ ( N - 1 ) e. ( ZZ>= ` M ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 2 | 1 | a1d | |- ( N e. ( ZZ>= ` M ) -> ( -. N = M -> M e. ZZ ) ) |
| 3 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 4 | peano2zm | |- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
|
| 5 | 3 4 | syl | |- ( N e. ( ZZ>= ` M ) -> ( N - 1 ) e. ZZ ) |
| 6 | 5 | a1d | |- ( N e. ( ZZ>= ` M ) -> ( -. N = M -> ( N - 1 ) e. ZZ ) ) |
| 7 | df-ne | |- ( N =/= M <-> -. N = M ) |
|
| 8 | eluzle | |- ( N e. ( ZZ>= ` M ) -> M <_ N ) |
|
| 9 | 1 | zred | |- ( N e. ( ZZ>= ` M ) -> M e. RR ) |
| 10 | eluzelre | |- ( N e. ( ZZ>= ` M ) -> N e. RR ) |
|
| 11 | 9 10 | ltlend | |- ( N e. ( ZZ>= ` M ) -> ( M < N <-> ( M <_ N /\ N =/= M ) ) ) |
| 12 | 11 | biimprd | |- ( N e. ( ZZ>= ` M ) -> ( ( M <_ N /\ N =/= M ) -> M < N ) ) |
| 13 | 8 12 | mpand | |- ( N e. ( ZZ>= ` M ) -> ( N =/= M -> M < N ) ) |
| 14 | 7 13 | biimtrrid | |- ( N e. ( ZZ>= ` M ) -> ( -. N = M -> M < N ) ) |
| 15 | zltlem1 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> M <_ ( N - 1 ) ) ) |
|
| 16 | 1 3 15 | syl2anc | |- ( N e. ( ZZ>= ` M ) -> ( M < N <-> M <_ ( N - 1 ) ) ) |
| 17 | 14 16 | sylibd | |- ( N e. ( ZZ>= ` M ) -> ( -. N = M -> M <_ ( N - 1 ) ) ) |
| 18 | 2 6 17 | 3jcad | |- ( N e. ( ZZ>= ` M ) -> ( -. N = M -> ( M e. ZZ /\ ( N - 1 ) e. ZZ /\ M <_ ( N - 1 ) ) ) ) |
| 19 | eluz2 | |- ( ( N - 1 ) e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ ( N - 1 ) e. ZZ /\ M <_ ( N - 1 ) ) ) |
|
| 20 | 18 19 | imbitrrdi | |- ( N e. ( ZZ>= ` M ) -> ( -. N = M -> ( N - 1 ) e. ( ZZ>= ` M ) ) ) |
| 21 | 20 | orrd | |- ( N e. ( ZZ>= ` M ) -> ( N = M \/ ( N - 1 ) e. ( ZZ>= ` M ) ) ) |