This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the group multiple function, also known as group exponentiation when viewed multiplicatively. (Contributed by Mario Carneiro, 11-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mulg | |- .g = ( g e. _V |-> ( n e. ZZ , x e. ( Base ` g ) |-> if ( n = 0 , ( 0g ` g ) , [_ seq 1 ( ( +g ` g ) , ( NN X. { x } ) ) / s ]_ if ( 0 < n , ( s ` n ) , ( ( invg ` g ) ` ( s ` -u n ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmg | |- .g |
|
| 1 | vg | |- g |
|
| 2 | cvv | |- _V |
|
| 3 | vn | |- n |
|
| 4 | cz | |- ZZ |
|
| 5 | vx | |- x |
|
| 6 | cbs | |- Base |
|
| 7 | 1 | cv | |- g |
| 8 | 7 6 | cfv | |- ( Base ` g ) |
| 9 | 3 | cv | |- n |
| 10 | cc0 | |- 0 |
|
| 11 | 9 10 | wceq | |- n = 0 |
| 12 | c0g | |- 0g |
|
| 13 | 7 12 | cfv | |- ( 0g ` g ) |
| 14 | c1 | |- 1 |
|
| 15 | cplusg | |- +g |
|
| 16 | 7 15 | cfv | |- ( +g ` g ) |
| 17 | cn | |- NN |
|
| 18 | 5 | cv | |- x |
| 19 | 18 | csn | |- { x } |
| 20 | 17 19 | cxp | |- ( NN X. { x } ) |
| 21 | 16 20 14 | cseq | |- seq 1 ( ( +g ` g ) , ( NN X. { x } ) ) |
| 22 | vs | |- s |
|
| 23 | clt | |- < |
|
| 24 | 10 9 23 | wbr | |- 0 < n |
| 25 | 22 | cv | |- s |
| 26 | 9 25 | cfv | |- ( s ` n ) |
| 27 | cminusg | |- invg |
|
| 28 | 7 27 | cfv | |- ( invg ` g ) |
| 29 | 9 | cneg | |- -u n |
| 30 | 29 25 | cfv | |- ( s ` -u n ) |
| 31 | 30 28 | cfv | |- ( ( invg ` g ) ` ( s ` -u n ) ) |
| 32 | 24 26 31 | cif | |- if ( 0 < n , ( s ` n ) , ( ( invg ` g ) ` ( s ` -u n ) ) ) |
| 33 | 22 21 32 | csb | |- [_ seq 1 ( ( +g ` g ) , ( NN X. { x } ) ) / s ]_ if ( 0 < n , ( s ` n ) , ( ( invg ` g ) ` ( s ` -u n ) ) ) |
| 34 | 11 13 33 | cif | |- if ( n = 0 , ( 0g ` g ) , [_ seq 1 ( ( +g ` g ) , ( NN X. { x } ) ) / s ]_ if ( 0 < n , ( s ` n ) , ( ( invg ` g ) ` ( s ` -u n ) ) ) ) |
| 35 | 3 5 4 8 34 | cmpo | |- ( n e. ZZ , x e. ( Base ` g ) |-> if ( n = 0 , ( 0g ` g ) , [_ seq 1 ( ( +g ` g ) , ( NN X. { x } ) ) / s ]_ if ( 0 < n , ( s ` n ) , ( ( invg ` g ) ` ( s ` -u n ) ) ) ) ) |
| 36 | 1 2 35 | cmpt | |- ( g e. _V |-> ( n e. ZZ , x e. ( Base ` g ) |-> if ( n = 0 , ( 0g ` g ) , [_ seq 1 ( ( +g ` g ) , ( NN X. { x } ) ) / s ]_ if ( 0 < n , ( s ` n ) , ( ( invg ` g ) ` ( s ` -u n ) ) ) ) ) ) |
| 37 | 0 36 | wceq | |- .g = ( g e. _V |-> ( n e. ZZ , x e. ( Base ` g ) |-> if ( n = 0 , ( 0g ` g ) , [_ seq 1 ( ( +g ` g ) , ( NN X. { x } ) ) / s ]_ if ( 0 < n , ( s ` n ) , ( ( invg ` g ) ` ( s ` -u n ) ) ) ) ) ) |