This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function value is a member of the range plus null. (Contributed by Scott Fenton, 8-Jun-2011) (Revised by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvrn0 | |- ( F ` X ) e. ( ran F u. { (/) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( ( F ` X ) = (/) -> ( F ` X ) = (/) ) |
|
| 2 | ssun2 | |- { (/) } C_ ( ran F u. { (/) } ) |
|
| 3 | 0ex | |- (/) e. _V |
|
| 4 | 3 | snid | |- (/) e. { (/) } |
| 5 | 2 4 | sselii | |- (/) e. ( ran F u. { (/) } ) |
| 6 | 1 5 | eqeltrdi | |- ( ( F ` X ) = (/) -> ( F ` X ) e. ( ran F u. { (/) } ) ) |
| 7 | ssun1 | |- ran F C_ ( ran F u. { (/) } ) |
|
| 8 | fvprc | |- ( -. X e. _V -> ( F ` X ) = (/) ) |
|
| 9 | 8 | con1i | |- ( -. ( F ` X ) = (/) -> X e. _V ) |
| 10 | fvexd | |- ( -. ( F ` X ) = (/) -> ( F ` X ) e. _V ) |
|
| 11 | fvbr0 | |- ( X F ( F ` X ) \/ ( F ` X ) = (/) ) |
|
| 12 | 11 | ori | |- ( -. X F ( F ` X ) -> ( F ` X ) = (/) ) |
| 13 | 12 | con1i | |- ( -. ( F ` X ) = (/) -> X F ( F ` X ) ) |
| 14 | brelrng | |- ( ( X e. _V /\ ( F ` X ) e. _V /\ X F ( F ` X ) ) -> ( F ` X ) e. ran F ) |
|
| 15 | 9 10 13 14 | syl3anc | |- ( -. ( F ` X ) = (/) -> ( F ` X ) e. ran F ) |
| 16 | 7 15 | sselid | |- ( -. ( F ` X ) = (/) -> ( F ` X ) e. ( ran F u. { (/) } ) ) |
| 17 | 6 16 | pm2.61i | |- ( F ` X ) e. ( ran F u. { (/) } ) |