This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak version of mpoex that holds without ax-rep . If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpoexw.1 | |- A e. _V |
|
| mpoexw.2 | |- B e. _V |
||
| mpoexw.3 | |- D e. _V |
||
| mpoexw.4 | |- A. x e. A A. y e. B C e. D |
||
| Assertion | mpoexw | |- ( x e. A , y e. B |-> C ) e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoexw.1 | |- A e. _V |
|
| 2 | mpoexw.2 | |- B e. _V |
|
| 3 | mpoexw.3 | |- D e. _V |
|
| 4 | mpoexw.4 | |- A. x e. A A. y e. B C e. D |
|
| 5 | eqid | |- ( x e. A , y e. B |-> C ) = ( x e. A , y e. B |-> C ) |
|
| 6 | 5 | mpofun | |- Fun ( x e. A , y e. B |-> C ) |
| 7 | 5 | dmmpoga | |- ( A. x e. A A. y e. B C e. D -> dom ( x e. A , y e. B |-> C ) = ( A X. B ) ) |
| 8 | 4 7 | ax-mp | |- dom ( x e. A , y e. B |-> C ) = ( A X. B ) |
| 9 | 1 2 | xpex | |- ( A X. B ) e. _V |
| 10 | 8 9 | eqeltri | |- dom ( x e. A , y e. B |-> C ) e. _V |
| 11 | 5 | rnmpo | |- ran ( x e. A , y e. B |-> C ) = { z | E. x e. A E. y e. B z = C } |
| 12 | 4 | rspec | |- ( x e. A -> A. y e. B C e. D ) |
| 13 | 12 | r19.21bi | |- ( ( x e. A /\ y e. B ) -> C e. D ) |
| 14 | eleq1a | |- ( C e. D -> ( z = C -> z e. D ) ) |
|
| 15 | 13 14 | syl | |- ( ( x e. A /\ y e. B ) -> ( z = C -> z e. D ) ) |
| 16 | 15 | rexlimdva | |- ( x e. A -> ( E. y e. B z = C -> z e. D ) ) |
| 17 | 16 | rexlimiv | |- ( E. x e. A E. y e. B z = C -> z e. D ) |
| 18 | 17 | abssi | |- { z | E. x e. A E. y e. B z = C } C_ D |
| 19 | 3 18 | ssexi | |- { z | E. x e. A E. y e. B z = C } e. _V |
| 20 | 11 19 | eqeltri | |- ran ( x e. A , y e. B |-> C ) e. _V |
| 21 | funexw | |- ( ( Fun ( x e. A , y e. B |-> C ) /\ dom ( x e. A , y e. B |-> C ) e. _V /\ ran ( x e. A , y e. B |-> C ) e. _V ) -> ( x e. A , y e. B |-> C ) e. _V ) |
|
| 22 | 6 10 20 21 | mp3an | |- ( x e. A , y e. B |-> C ) e. _V |