This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Shorter proof of mulgfval using ax-rep . (Contributed by Mario Carneiro, 11-Dec-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgval.b | |- B = ( Base ` G ) |
|
| mulgval.p | |- .+ = ( +g ` G ) |
||
| mulgval.o | |- .0. = ( 0g ` G ) |
||
| mulgval.i | |- I = ( invg ` G ) |
||
| mulgval.t | |- .x. = ( .g ` G ) |
||
| Assertion | mulgfvalALT | |- .x. = ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgval.b | |- B = ( Base ` G ) |
|
| 2 | mulgval.p | |- .+ = ( +g ` G ) |
|
| 3 | mulgval.o | |- .0. = ( 0g ` G ) |
|
| 4 | mulgval.i | |- I = ( invg ` G ) |
|
| 5 | mulgval.t | |- .x. = ( .g ` G ) |
|
| 6 | eqidd | |- ( w = G -> ZZ = ZZ ) |
|
| 7 | fveq2 | |- ( w = G -> ( Base ` w ) = ( Base ` G ) ) |
|
| 8 | 7 1 | eqtr4di | |- ( w = G -> ( Base ` w ) = B ) |
| 9 | fveq2 | |- ( w = G -> ( 0g ` w ) = ( 0g ` G ) ) |
|
| 10 | 9 3 | eqtr4di | |- ( w = G -> ( 0g ` w ) = .0. ) |
| 11 | seqex | |- seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) e. _V |
|
| 12 | 11 | a1i | |- ( w = G -> seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) e. _V ) |
| 13 | id | |- ( s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) -> s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) ) |
|
| 14 | fveq2 | |- ( w = G -> ( +g ` w ) = ( +g ` G ) ) |
|
| 15 | 14 2 | eqtr4di | |- ( w = G -> ( +g ` w ) = .+ ) |
| 16 | 15 | seqeq2d | |- ( w = G -> seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) = seq 1 ( .+ , ( NN X. { x } ) ) ) |
| 17 | 13 16 | sylan9eqr | |- ( ( w = G /\ s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) ) -> s = seq 1 ( .+ , ( NN X. { x } ) ) ) |
| 18 | 17 | fveq1d | |- ( ( w = G /\ s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) ) -> ( s ` n ) = ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) ) |
| 19 | simpl | |- ( ( w = G /\ s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) ) -> w = G ) |
|
| 20 | 19 | fveq2d | |- ( ( w = G /\ s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) ) -> ( invg ` w ) = ( invg ` G ) ) |
| 21 | 20 4 | eqtr4di | |- ( ( w = G /\ s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) ) -> ( invg ` w ) = I ) |
| 22 | 17 | fveq1d | |- ( ( w = G /\ s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) ) -> ( s ` -u n ) = ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) |
| 23 | 21 22 | fveq12d | |- ( ( w = G /\ s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) ) -> ( ( invg ` w ) ` ( s ` -u n ) ) = ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) |
| 24 | 18 23 | ifeq12d | |- ( ( w = G /\ s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) ) -> if ( 0 < n , ( s ` n ) , ( ( invg ` w ) ` ( s ` -u n ) ) ) = if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) |
| 25 | 12 24 | csbied | |- ( w = G -> [_ seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) / s ]_ if ( 0 < n , ( s ` n ) , ( ( invg ` w ) ` ( s ` -u n ) ) ) = if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) |
| 26 | 10 25 | ifeq12d | |- ( w = G -> if ( n = 0 , ( 0g ` w ) , [_ seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) / s ]_ if ( 0 < n , ( s ` n ) , ( ( invg ` w ) ` ( s ` -u n ) ) ) ) = if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) |
| 27 | 6 8 26 | mpoeq123dv | |- ( w = G -> ( n e. ZZ , x e. ( Base ` w ) |-> if ( n = 0 , ( 0g ` w ) , [_ seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) / s ]_ if ( 0 < n , ( s ` n ) , ( ( invg ` w ) ` ( s ` -u n ) ) ) ) ) = ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) ) |
| 28 | df-mulg | |- .g = ( w e. _V |-> ( n e. ZZ , x e. ( Base ` w ) |-> if ( n = 0 , ( 0g ` w ) , [_ seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) / s ]_ if ( 0 < n , ( s ` n ) , ( ( invg ` w ) ` ( s ` -u n ) ) ) ) ) ) |
|
| 29 | zex | |- ZZ e. _V |
|
| 30 | 1 | fvexi | |- B e. _V |
| 31 | 29 30 | mpoex | |- ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) e. _V |
| 32 | 27 28 31 | fvmpt | |- ( G e. _V -> ( .g ` G ) = ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) ) |
| 33 | fvprc | |- ( -. G e. _V -> ( .g ` G ) = (/) ) |
|
| 34 | eqid | |- ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) = ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) |
|
| 35 | 3 | fvexi | |- .0. e. _V |
| 36 | fvex | |- ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) e. _V |
|
| 37 | fvex | |- ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) e. _V |
|
| 38 | 36 37 | ifex | |- if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) e. _V |
| 39 | 35 38 | ifex | |- if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) e. _V |
| 40 | 34 39 | fnmpoi | |- ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) Fn ( ZZ X. B ) |
| 41 | fvprc | |- ( -. G e. _V -> ( Base ` G ) = (/) ) |
|
| 42 | 1 41 | eqtrid | |- ( -. G e. _V -> B = (/) ) |
| 43 | 42 | xpeq2d | |- ( -. G e. _V -> ( ZZ X. B ) = ( ZZ X. (/) ) ) |
| 44 | xp0 | |- ( ZZ X. (/) ) = (/) |
|
| 45 | 43 44 | eqtrdi | |- ( -. G e. _V -> ( ZZ X. B ) = (/) ) |
| 46 | 45 | fneq2d | |- ( -. G e. _V -> ( ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) Fn ( ZZ X. B ) <-> ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) Fn (/) ) ) |
| 47 | 40 46 | mpbii | |- ( -. G e. _V -> ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) Fn (/) ) |
| 48 | fn0 | |- ( ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) Fn (/) <-> ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) = (/) ) |
|
| 49 | 47 48 | sylib | |- ( -. G e. _V -> ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) = (/) ) |
| 50 | 33 49 | eqtr4d | |- ( -. G e. _V -> ( .g ` G ) = ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) ) |
| 51 | 32 50 | pm2.61i | |- ( .g ` G ) = ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) |
| 52 | 5 51 | eqtri | |- .x. = ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) |