This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute absolute value of multiplication over gcd. Theorem 1.4(c) in ApostolNT p. 16. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absmulgcd | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) gcd ( K x. N ) ) = ( abs ` ( K x. ( M gcd N ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) |
|
| 2 | nn0re | |- ( ( M gcd N ) e. NN0 -> ( M gcd N ) e. RR ) |
|
| 3 | nn0ge0 | |- ( ( M gcd N ) e. NN0 -> 0 <_ ( M gcd N ) ) |
|
| 4 | 2 3 | absidd | |- ( ( M gcd N ) e. NN0 -> ( abs ` ( M gcd N ) ) = ( M gcd N ) ) |
| 5 | 1 4 | syl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( abs ` ( M gcd N ) ) = ( M gcd N ) ) |
| 6 | 5 | oveq2d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` K ) x. ( abs ` ( M gcd N ) ) ) = ( ( abs ` K ) x. ( M gcd N ) ) ) |
| 7 | 6 | 3adant1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( abs ` K ) x. ( abs ` ( M gcd N ) ) ) = ( ( abs ` K ) x. ( M gcd N ) ) ) |
| 8 | zcn | |- ( K e. ZZ -> K e. CC ) |
|
| 9 | 1 | nn0cnd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. CC ) |
| 10 | absmul | |- ( ( K e. CC /\ ( M gcd N ) e. CC ) -> ( abs ` ( K x. ( M gcd N ) ) ) = ( ( abs ` K ) x. ( abs ` ( M gcd N ) ) ) ) |
|
| 11 | 8 9 10 | syl2an | |- ( ( K e. ZZ /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( abs ` ( K x. ( M gcd N ) ) ) = ( ( abs ` K ) x. ( abs ` ( M gcd N ) ) ) ) |
| 12 | 11 | 3impb | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( abs ` ( K x. ( M gcd N ) ) ) = ( ( abs ` K ) x. ( abs ` ( M gcd N ) ) ) ) |
| 13 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 14 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 15 | absmul | |- ( ( K e. CC /\ M e. CC ) -> ( abs ` ( K x. M ) ) = ( ( abs ` K ) x. ( abs ` M ) ) ) |
|
| 16 | absmul | |- ( ( K e. CC /\ N e. CC ) -> ( abs ` ( K x. N ) ) = ( ( abs ` K ) x. ( abs ` N ) ) ) |
|
| 17 | 15 16 | oveqan12d | |- ( ( ( K e. CC /\ M e. CC ) /\ ( K e. CC /\ N e. CC ) ) -> ( ( abs ` ( K x. M ) ) gcd ( abs ` ( K x. N ) ) ) = ( ( ( abs ` K ) x. ( abs ` M ) ) gcd ( ( abs ` K ) x. ( abs ` N ) ) ) ) |
| 18 | 17 | 3impdi | |- ( ( K e. CC /\ M e. CC /\ N e. CC ) -> ( ( abs ` ( K x. M ) ) gcd ( abs ` ( K x. N ) ) ) = ( ( ( abs ` K ) x. ( abs ` M ) ) gcd ( ( abs ` K ) x. ( abs ` N ) ) ) ) |
| 19 | 8 13 14 18 | syl3an | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( abs ` ( K x. M ) ) gcd ( abs ` ( K x. N ) ) ) = ( ( ( abs ` K ) x. ( abs ` M ) ) gcd ( ( abs ` K ) x. ( abs ` N ) ) ) ) |
| 20 | zmulcl | |- ( ( K e. ZZ /\ M e. ZZ ) -> ( K x. M ) e. ZZ ) |
|
| 21 | zmulcl | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( K x. N ) e. ZZ ) |
|
| 22 | gcdabs | |- ( ( ( K x. M ) e. ZZ /\ ( K x. N ) e. ZZ ) -> ( ( abs ` ( K x. M ) ) gcd ( abs ` ( K x. N ) ) ) = ( ( K x. M ) gcd ( K x. N ) ) ) |
|
| 23 | 20 21 22 | syl2an | |- ( ( ( K e. ZZ /\ M e. ZZ ) /\ ( K e. ZZ /\ N e. ZZ ) ) -> ( ( abs ` ( K x. M ) ) gcd ( abs ` ( K x. N ) ) ) = ( ( K x. M ) gcd ( K x. N ) ) ) |
| 24 | 23 | 3impdi | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( abs ` ( K x. M ) ) gcd ( abs ` ( K x. N ) ) ) = ( ( K x. M ) gcd ( K x. N ) ) ) |
| 25 | nn0abscl | |- ( K e. ZZ -> ( abs ` K ) e. NN0 ) |
|
| 26 | zabscl | |- ( M e. ZZ -> ( abs ` M ) e. ZZ ) |
|
| 27 | zabscl | |- ( N e. ZZ -> ( abs ` N ) e. ZZ ) |
|
| 28 | mulgcd | |- ( ( ( abs ` K ) e. NN0 /\ ( abs ` M ) e. ZZ /\ ( abs ` N ) e. ZZ ) -> ( ( ( abs ` K ) x. ( abs ` M ) ) gcd ( ( abs ` K ) x. ( abs ` N ) ) ) = ( ( abs ` K ) x. ( ( abs ` M ) gcd ( abs ` N ) ) ) ) |
|
| 29 | 25 26 27 28 | syl3an | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` K ) x. ( abs ` M ) ) gcd ( ( abs ` K ) x. ( abs ` N ) ) ) = ( ( abs ` K ) x. ( ( abs ` M ) gcd ( abs ` N ) ) ) ) |
| 30 | 19 24 29 | 3eqtr3d | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) gcd ( K x. N ) ) = ( ( abs ` K ) x. ( ( abs ` M ) gcd ( abs ` N ) ) ) ) |
| 31 | gcdabs | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) gcd ( abs ` N ) ) = ( M gcd N ) ) |
|
| 32 | 31 | 3adant1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) gcd ( abs ` N ) ) = ( M gcd N ) ) |
| 33 | 32 | oveq2d | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( abs ` K ) x. ( ( abs ` M ) gcd ( abs ` N ) ) ) = ( ( abs ` K ) x. ( M gcd N ) ) ) |
| 34 | 30 33 | eqtrd | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) gcd ( K x. N ) ) = ( ( abs ` K ) x. ( M gcd N ) ) ) |
| 35 | 7 12 34 | 3eqtr4rd | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) gcd ( K x. N ) ) = ( abs ` ( K x. ( M gcd N ) ) ) ) |