This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value, by convention, of the gcd operator when both operands are 0. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcd0val | |- ( 0 gcd 0 ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z | |- 0 e. ZZ |
|
| 2 | gcdval | |- ( ( 0 e. ZZ /\ 0 e. ZZ ) -> ( 0 gcd 0 ) = if ( ( 0 = 0 /\ 0 = 0 ) , 0 , sup ( { n e. ZZ | ( n || 0 /\ n || 0 ) } , RR , < ) ) ) |
|
| 3 | 1 1 2 | mp2an | |- ( 0 gcd 0 ) = if ( ( 0 = 0 /\ 0 = 0 ) , 0 , sup ( { n e. ZZ | ( n || 0 /\ n || 0 ) } , RR , < ) ) |
| 4 | eqid | |- 0 = 0 |
|
| 5 | iftrue | |- ( ( 0 = 0 /\ 0 = 0 ) -> if ( ( 0 = 0 /\ 0 = 0 ) , 0 , sup ( { n e. ZZ | ( n || 0 /\ n || 0 ) } , RR , < ) ) = 0 ) |
|
| 6 | 4 4 5 | mp2an | |- if ( ( 0 = 0 /\ 0 = 0 ) , 0 , sup ( { n e. ZZ | ( n || 0 /\ n || 0 ) } , RR , < ) ) = 0 |
| 7 | 3 6 | eqtri | |- ( 0 gcd 0 ) = 0 |