This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A metric space is second-countable iff it is separable (has a countable dense subset). (Contributed by Mario Carneiro, 13-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | methaus.1 | |- J = ( MetOpen ` D ) |
|
| Assertion | met2ndc | |- ( D e. ( *Met ` X ) -> ( J e. 2ndc <-> E. x e. ~P X ( x ~<_ _om /\ ( ( cls ` J ) ` x ) = X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | methaus.1 | |- J = ( MetOpen ` D ) |
|
| 2 | eqid | |- U. J = U. J |
|
| 3 | 2 | 2ndcsep | |- ( J e. 2ndc -> E. x e. ~P U. J ( x ~<_ _om /\ ( ( cls ` J ) ` x ) = U. J ) ) |
| 4 | 1 | mopnuni | |- ( D e. ( *Met ` X ) -> X = U. J ) |
| 5 | 4 | pweqd | |- ( D e. ( *Met ` X ) -> ~P X = ~P U. J ) |
| 6 | 4 | eqeq2d | |- ( D e. ( *Met ` X ) -> ( ( ( cls ` J ) ` x ) = X <-> ( ( cls ` J ) ` x ) = U. J ) ) |
| 7 | 6 | anbi2d | |- ( D e. ( *Met ` X ) -> ( ( x ~<_ _om /\ ( ( cls ` J ) ` x ) = X ) <-> ( x ~<_ _om /\ ( ( cls ` J ) ` x ) = U. J ) ) ) |
| 8 | 5 7 | rexeqbidv | |- ( D e. ( *Met ` X ) -> ( E. x e. ~P X ( x ~<_ _om /\ ( ( cls ` J ) ` x ) = X ) <-> E. x e. ~P U. J ( x ~<_ _om /\ ( ( cls ` J ) ` x ) = U. J ) ) ) |
| 9 | 3 8 | imbitrrid | |- ( D e. ( *Met ` X ) -> ( J e. 2ndc -> E. x e. ~P X ( x ~<_ _om /\ ( ( cls ` J ) ` x ) = X ) ) ) |
| 10 | elpwi | |- ( x e. ~P X -> x C_ X ) |
|
| 11 | 1 | met2ndci | |- ( ( D e. ( *Met ` X ) /\ ( x C_ X /\ x ~<_ _om /\ ( ( cls ` J ) ` x ) = X ) ) -> J e. 2ndc ) |
| 12 | 11 | 3exp2 | |- ( D e. ( *Met ` X ) -> ( x C_ X -> ( x ~<_ _om -> ( ( ( cls ` J ) ` x ) = X -> J e. 2ndc ) ) ) ) |
| 13 | 12 | imp4a | |- ( D e. ( *Met ` X ) -> ( x C_ X -> ( ( x ~<_ _om /\ ( ( cls ` J ) ` x ) = X ) -> J e. 2ndc ) ) ) |
| 14 | 10 13 | syl5 | |- ( D e. ( *Met ` X ) -> ( x e. ~P X -> ( ( x ~<_ _om /\ ( ( cls ` J ) ` x ) = X ) -> J e. 2ndc ) ) ) |
| 15 | 14 | rexlimdv | |- ( D e. ( *Met ` X ) -> ( E. x e. ~P X ( x ~<_ _om /\ ( ( cls ` J ) ` x ) = X ) -> J e. 2ndc ) ) |
| 16 | 9 15 | impbid | |- ( D e. ( *Met ` X ) -> ( J e. 2ndc <-> E. x e. ~P X ( x ~<_ _om /\ ( ( cls ` J ) ` x ) = X ) ) ) |