This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The determinant of the identity matrix is 1, i.e. the determinant function is normalized, see also definition in Lang p. 513. (Contributed by SO, 10-Jul-2018) (Proof shortened by AV, 25-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdet1.d | |- D = ( N maDet R ) |
|
| mdet1.a | |- A = ( N Mat R ) |
||
| mdet1.n | |- I = ( 1r ` A ) |
||
| mdet1.o | |- .1. = ( 1r ` R ) |
||
| Assertion | mdet1 | |- ( ( R e. CRing /\ N e. Fin ) -> ( D ` I ) = .1. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdet1.d | |- D = ( N maDet R ) |
|
| 2 | mdet1.a | |- A = ( N Mat R ) |
|
| 3 | mdet1.n | |- I = ( 1r ` A ) |
|
| 4 | mdet1.o | |- .1. = ( 1r ` R ) |
|
| 5 | id | |- ( ( R e. CRing /\ N e. Fin ) -> ( R e. CRing /\ N e. Fin ) ) |
|
| 6 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 7 | 6 | anim1ci | |- ( ( R e. CRing /\ N e. Fin ) -> ( N e. Fin /\ R e. Ring ) ) |
| 8 | 2 | matring | |- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
| 9 | eqid | |- ( Base ` A ) = ( Base ` A ) |
|
| 10 | 9 3 | ringidcl | |- ( A e. Ring -> I e. ( Base ` A ) ) |
| 11 | 7 8 10 | 3syl | |- ( ( R e. CRing /\ N e. Fin ) -> I e. ( Base ` A ) ) |
| 12 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 13 | 12 4 | ringidcl | |- ( R e. Ring -> .1. e. ( Base ` R ) ) |
| 14 | 6 13 | syl | |- ( R e. CRing -> .1. e. ( Base ` R ) ) |
| 15 | 14 | adantr | |- ( ( R e. CRing /\ N e. Fin ) -> .1. e. ( Base ` R ) ) |
| 16 | 5 11 15 | jca32 | |- ( ( R e. CRing /\ N e. Fin ) -> ( ( R e. CRing /\ N e. Fin ) /\ ( I e. ( Base ` A ) /\ .1. e. ( Base ` R ) ) ) ) |
| 17 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 18 | simplr | |- ( ( ( R e. CRing /\ N e. Fin ) /\ ( i e. N /\ j e. N ) ) -> N e. Fin ) |
|
| 19 | 6 | adantr | |- ( ( R e. CRing /\ N e. Fin ) -> R e. Ring ) |
| 20 | 19 | adantr | |- ( ( ( R e. CRing /\ N e. Fin ) /\ ( i e. N /\ j e. N ) ) -> R e. Ring ) |
| 21 | simprl | |- ( ( ( R e. CRing /\ N e. Fin ) /\ ( i e. N /\ j e. N ) ) -> i e. N ) |
|
| 22 | simprr | |- ( ( ( R e. CRing /\ N e. Fin ) /\ ( i e. N /\ j e. N ) ) -> j e. N ) |
|
| 23 | 2 4 17 18 20 21 22 3 | mat1ov | |- ( ( ( R e. CRing /\ N e. Fin ) /\ ( i e. N /\ j e. N ) ) -> ( i I j ) = if ( i = j , .1. , ( 0g ` R ) ) ) |
| 24 | 23 | ralrimivva | |- ( ( R e. CRing /\ N e. Fin ) -> A. i e. N A. j e. N ( i I j ) = if ( i = j , .1. , ( 0g ` R ) ) ) |
| 25 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 26 | eqid | |- ( .g ` ( mulGrp ` R ) ) = ( .g ` ( mulGrp ` R ) ) |
|
| 27 | 1 2 9 25 17 12 26 | mdetdiagid | |- ( ( ( R e. CRing /\ N e. Fin ) /\ ( I e. ( Base ` A ) /\ .1. e. ( Base ` R ) ) ) -> ( A. i e. N A. j e. N ( i I j ) = if ( i = j , .1. , ( 0g ` R ) ) -> ( D ` I ) = ( ( # ` N ) ( .g ` ( mulGrp ` R ) ) .1. ) ) ) |
| 28 | 16 24 27 | sylc | |- ( ( R e. CRing /\ N e. Fin ) -> ( D ` I ) = ( ( # ` N ) ( .g ` ( mulGrp ` R ) ) .1. ) ) |
| 29 | ringsrg | |- ( R e. Ring -> R e. SRing ) |
|
| 30 | 6 29 | syl | |- ( R e. CRing -> R e. SRing ) |
| 31 | hashcl | |- ( N e. Fin -> ( # ` N ) e. NN0 ) |
|
| 32 | 25 26 4 | srg1expzeq1 | |- ( ( R e. SRing /\ ( # ` N ) e. NN0 ) -> ( ( # ` N ) ( .g ` ( mulGrp ` R ) ) .1. ) = .1. ) |
| 33 | 30 31 32 | syl2an | |- ( ( R e. CRing /\ N e. Fin ) -> ( ( # ` N ) ( .g ` ( mulGrp ` R ) ) .1. ) = .1. ) |
| 34 | 28 33 | eqtrd | |- ( ( R e. CRing /\ N e. Fin ) -> ( D ` I ) = .1. ) |