This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A strict order relation satisfies strict trichotomy. (Contributed by NM, 19-Feb-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sotric | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B R C <-> -. ( B = C \/ C R B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sonr | |- ( ( R Or A /\ B e. A ) -> -. B R B ) |
|
| 2 | breq2 | |- ( B = C -> ( B R B <-> B R C ) ) |
|
| 3 | 2 | notbid | |- ( B = C -> ( -. B R B <-> -. B R C ) ) |
| 4 | 1 3 | syl5ibcom | |- ( ( R Or A /\ B e. A ) -> ( B = C -> -. B R C ) ) |
| 5 | 4 | adantrr | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B = C -> -. B R C ) ) |
| 6 | so2nr | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> -. ( B R C /\ C R B ) ) |
|
| 7 | imnan | |- ( ( B R C -> -. C R B ) <-> -. ( B R C /\ C R B ) ) |
|
| 8 | 6 7 | sylibr | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B R C -> -. C R B ) ) |
| 9 | 8 | con2d | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( C R B -> -. B R C ) ) |
| 10 | 5 9 | jaod | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( ( B = C \/ C R B ) -> -. B R C ) ) |
| 11 | solin | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B R C \/ B = C \/ C R B ) ) |
|
| 12 | 3orass | |- ( ( B R C \/ B = C \/ C R B ) <-> ( B R C \/ ( B = C \/ C R B ) ) ) |
|
| 13 | 11 12 | sylib | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B R C \/ ( B = C \/ C R B ) ) ) |
| 14 | 13 | ord | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( -. B R C -> ( B = C \/ C R B ) ) ) |
| 15 | 10 14 | impbid | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( ( B = C \/ C R B ) <-> -. B R C ) ) |
| 16 | 15 | con2bid | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B R C <-> -. ( B = C \/ C R B ) ) ) |